
Damla Senol Cali
Staff Software Engineer, Hardware Acceleration

Bionano Genomics

Email: damlasenolcali@gmail.com

Website: https://damlasenolcali.github.io

SAFARI Live Seminar

November 7, 2021

Accelerating Genome Sequence Analysis via
Efficient Hardware/Algorithm Co-Design

mailto:damlasenolcali@gmail.com
https://damlasenolcali.github.io/

Damla Senol Cali

Genome Sequencing
q Genome sequencing: Enables us to determine the order of the DNA

sequence in an organism’s genome

o Plays a pivotal role in:
§ Personalized medicine
§ Outbreak tracing
§ Understanding of evolution

q Challenges:
o There is no sequencing machine that takes long DNA as an input,

and gives the complete sequence as output
o Sequencing machines extract small randomized fragments of the

original DNA sequence

2

Genome DNA

Damla Senol Cali

Genome Sequencing (cont’d.)

3

Sample Collection

Preparation

Sequencing

Genome Sequence
Analysis

Large DNA
molecule

Chopped DNA
fragments

Sequenced
reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT

ACGACGTAGCT

AAAAAAAAAA

ACGAGCGGGT

Damla Senol Cali

Sequencing Technologies

4

Short reads: a few hundred base pairs and error rate of ∼0.1%
Long reads: thousands to millions of base pairs and error rate of 5–10%

Oxford Nanopore
(ONT)

PacBio Illumina

Damla Senol Cali

Current State of Sequencing

5

Damla Senol Cali

Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

6

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Damla Senol Cali

Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

7

Computation is a bottleneck!

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Damla Senol Cali

Problem Statement

Rapid genome sequence analysis is currently
bottlenecked by the computational power

and memory bandwidth limitations of
existing systems, as many of the steps

in genome sequence analysis must process
a large amount of data

8

Damla Senol Cali

Our Goal & Approach
q Our Goal:

Accelerating genome sequence analysis by efficient
hardware/algorithm co-design

q Our Approach:
(1) Analyze the multiple steps and the associated tools in

the genome sequence analysis pipeline,
(2) Expose the tradeoffs between accuracy, performance,

memory usage and scalability, and
(3) Co-design fast and efficient algorithms along with

scalable and energy-efficient customized hardware
accelerators for the key bottleneck steps of the pipeline

9

Damla Senol Cali

Research Statement

Genome sequence analysis
can be accelerated by co-designing

fast and efficient algorithms along with
scalable and energy-efficient customized

hardware accelerators for the
key bottleneck steps of the pipeline

10

Damla Senol Cali

Research Contributions

11

Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework for
genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of
bitvector-based sequence alignment

[Ongoing]

SeGraM: Hardware acceleration framework for
sequence-to-graph mapping

[Ongoing]

Damla Senol Cali

Research Contributions

12

Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework for
genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of
bitvector-based sequence alignment

[Ongoing]

SeGraM: Hardware acceleration framework for
sequence-to-graph mapping

[Ongoing]

Damla Senol Cali

Read Mapping, method of aligning the
reads against the reference genome in

order to detect matches and variations.

ACGTACCCCGT
GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of
merging the reads in order to construct

the original sequence.

Reference
Genome

Original
Sequence

Genome Sequence Analysis

13

Reads Mapped Reads Reads Assembled Reads

Damla Senol Cali

Genome Assembly Pipeline Using Long Reads

Basecalling
(Translates signal data into bases: A,C,G,T)

Read-to-Read Overlap Finding
(Finds pairwise read alignments for each pair of read)

Assembly
(Traverses the overlap graph & constructs the draft assembly)

Read Mapping
(Maps the reads to the draft assembly)

Raw signal
data

Assembly

DNA reads

Overlaps

Draft assembly

Improved
assembly

Polishing
(Polishes the draft assembly & increases the accuracy)

Mappings of
reads against
draft assembly

q With the emergence of long read sequencing technologies, de novo assembly
becomes a promising way of constructing the original genome.

14

Damla Senol Cali

Our Contributions

q Analyze the tools in multiple dimensions: accuracy,
performance, memory usage, and scalability

q Reveal new bottlenecks and trade-offs

q First study on bottleneck analysis of nanopore sequence
analysis pipeline on real machines

q Provide guidelines for practitioners

q Provide guidelines for tool developers

15

Damla Senol Cali

Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that increase the memory requirements
o Algorithms that are not cache-efficient
o Not keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage
o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads

16

Damla Senol Cali

Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints,
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that increase the memory requirements
o Algorithms that are not cache-efficient
o Not keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage
o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads

17

Goal 1:
High-performance and low-power

Damla Senol Cali

Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints,
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that can minimize the memory requirements
o Cache-efficient algorithms
o Keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage
o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads

18

Goal 1:
High-performance and low-power

Goal 2:
Memory-efficient

Damla Senol Cali

Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints,
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that can minimize the memory requirements
o Cache-efficient algorithms
o Keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage.
o Dividing the input data into batches
o Limiting the memory usage of each thread
o Dividing the computation instead of the dataset between simultaneous threads

19

Goal 1:
High-performance and low-power

Goal 2:
Memory-efficient

Goal 3:
Scalable/highly-parallel

Damla Senol Cali

Nanopore Sequencing & Tools [BiB 2018]

20

Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can Alkan, and Onur Mutlu,
"Nanopore Sequencing Technology and Tools for Genome Assembly:
Computational Analysis of the Current State, Bottlenecks and Future
Directions"
Briefings in Bioinformatics, April 2018.

https://arxiv.org/pdf/1711.08774.pdf

Damla Senol Cali

Research Contributions

21

Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework for
genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of
bitvector-based sequence alignment

[Ongoing]

SeGraM: Hardware acceleration framework for
sequence-to-graph mapping

[Ongoing]

Damla Senol Cali

Read Mapping, method of aligning the
reads against the reference genome in

order to detect matches and variations.

ACGTACCCCGT
GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of
merging the reads in order to construct

the original sequence.

Recall: Genome Sequence Analysis

22

Damla Senol Cali

Read Mapping Pipeline

23

Indexing
(Pre-processing step to generate index of reference)

Seeding
(Query the index)

Pre-Alignment Filtering
(Filter out dissimilar sequences)

Read Alignment
(Perform distance/score calculation & traceback)

Reference
genome

Hash-table
based index

Potential mapping
locations

Optimal
alignment

Remaining
potential mapping
locations

Reads

Reference
segment

Query read

Damla Senol Cali

GSA with Read Mapping
q Read mapping: First key step in genome sequence analysis (GSA)

o Aligns reads to one or more possible locations within
the reference genome, and

o Finds the matches and differences between the read and
the reference genome segment at that location

q Multiple steps of read mapping require approximate string matching

o Approximate string matching (ASM) enables read mapping to
account for sequencing errors and genetic variations in the reads

q Bottlenecked by the computational power and memory bandwidth
limitations of existing systems

24

Damla Senol Cali

GenASM: ASM Framework for GSA

q GenASM: First ASM acceleration framework for GSA
o Based upon the Bitap algorithm

§ Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm
§ Highly-parallel Bitap with long read support
§ Novel bitvector-based algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms
with low-power and area-efficient hardware accelerators

Our Goal:
Accelerate approximate string matching

by designing a fast and flexible framework,
which can accelerate multiple steps of genome sequence analysis

25

Damla Senol Cali

q Sequenced genome may not exactly map to the reference genome due
to genetic variations and sequencing errors

q Approximate string matching (ASM):
o Detect the differences and similarities between two sequences
o In genomics, ASM is required to:

§ Find the minimum edit distance (i.e., total number of differences)
§ Find the optimal alignment with a traceback step

◦ Sequence of matches, substitutions, insertions and deletions,
along with their positions

o Usually implemented as a dynamic programming (DP) based algorithm

Approximate String Matching

26

Reference:
Read:

insertionsubstitutiondeletion

A A A AT G T T TA G T G C TA C T G
A A AT G T T TA C T G C TA C T T G
A A A AT G T T TA G T G C TA C T G
A A A AT G T T TA C T G C TA C T T G
A A A AT G T T TA G T G C TA C T G
A A A AT G T T TA G T G C TA C T T G
A A A AT G T T TA G T G C TA C T T G
A A A AT G T T TA G T G C TA C T T GC

A
T

G

Damla Senol Cali

DP-based ASM

27

Commonly-used
algorithm for ASM

in genomics…

...with quadratic
time and space

complexity

Damla Senol Cali

Bitap Algorithm
q Bitap1,2 performs ASM with fast and simple bitwise operations

o Amenable to efficient hardware acceleration
o Computes the minimum edit distance between a text (e.g., reference

genome) and a pattern (e.g., read) with a maximum of k errors

q Step 1: Pre-processing (per pattern)
o Generate a pattern bitmask (PM) for each character in the alphabet

(A, C, G, T)
o Each PM indicates if character exists at each position of the pattern

q Step 2: Searching (Edit Distance Calculation)
o Compare all characters of the text with the pattern by using:

§ Pattern bitmasks
§ Status bitvectors that hold the partial matches
§ Bitwise operations

[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.
[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.

28

Damla Senol Cali

Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take

place sequentially

29

Damla Senol Cali

Bitap Algorithm (cont’d.)

Large number of
iterations

q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1
insertion = R[d-1] << 1
match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

30

Damla Senol Cali

Bitap Algorithm (cont’d.)

Data dependency
between iterations

(i.e., no
parallelization)

q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1
insertion = R[d-1] << 1
match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

31

Damla Senol Cali

Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take

place sequentially

2) No Support for Traceback:
o Bitap does not include any support for optimal alignment identification

32

Damla Senol Cali

Bitap Algorithm (cont’d.)
q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1
insertion = R[d-1] << 1
match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

33

Does not store and process
these intermediate bitvectors
to find the optimal alignment

(i.e., no traceback)

Damla Senol Cali

Hardware

Algorithm

Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take

place sequentially

2) No Support for Traceback:
o Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:
o Each bitvector has a length equal to the length of the pattern
o Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:
o Text-level parallelism
o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:
o High memory bandwidth required to read and write the computed

bitvectors to memory

34

Damla Senol Cali

SW

HW

GenASM: ASM Framework for GSA
q Approximate string matching (ASM) acceleration framework based

on the Bitap algorithm

q First ASM acceleration framework for genome sequence analysis

q We overcome the five limitations that hinder Bitap’s use in genome
sequence analysis:

o Modified and extended ASM algorithm

§ Highly-parallel Bitap with long read support

§ Novel bitvector-based algorithm to perform traceback

o Specialized, low-power and area-efficient hardware for
both modified Bitap and novel traceback algorithms

35

Damla Senol Cali

GenASM-DC GenASM-TB

GenASM Hardware Design

36

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.

Damla Senol Cali

GenASM Hardware Design

37

GenASM-DC GenASM-TB

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.

reference
& query

locations

Write
bitvectors

reference
text

& query
pattern

sub-text &
sub-pattern

Read
bitvectors

Generate
bitvectors

2

1

3

4

5 6

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Read
bitvectors

6
Write

bitvectors

5

Generate
bitvectors 4

sub-text &
sub-pattern3

reference
text

& query
pattern

2

reference
& query

locations

1

Find the
traceback output

7

Damla Senol Cali

GenASM Hardware Design

38

GenASM-DC GenASM-TB

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.

reference
& query

locations

Write
bitvectors

reference
text

& query
pattern

sub-text &
sub-pattern

Read
bitvectors

Find the
traceback output

Generate
bitvectors

2

1

3

4

5 6

7

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Our specialized compute units and on-chip SRAMs help us to:
à Match the rate of computation with memory capacity and bandwidth

à Achieve high performance and power efficiency
à Scale linearly in performance with

the number of parallel compute units that we add to the system

Damla Senol Cali

GenASM-DC: Hardware Design
q Linear cyclic systolic array-based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint

39

Processing Block (PB)

Processing Core (PC)

OldR[d-1] <<

<<

<<

R[d-1]

OldR[d]

PatternMask Match

R[d]

Substitution

Insertion

Deletion

OldR
out

PM
out

PM
out

OldR in

PM in
PC

PE1

PC

PE2

PC

PEp-1

PC

PEp

OldR
out

PC

PE

DC-SRAM

TB-SRAMp-1

Intermediate Bitvectors

TB-SRAMpTB-SRAM2TB-SRAM1

Damla Senol Cali

Bitwise
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192 insertion

deletion

subs

64

64

64

64

1

2

Next Rd
Addr

Compute

3

GenASM-TB

GenASM-TB: Hardware Design

q Very simple logic:
❶Reads the bitvectors from one of the TB-SRAMs using the computed
address
❷Performs the required bitwise comparisons to find the traceback output
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors

40

Bitwise
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192 insertion

deletion

subs

64

64

64

64

to main
memory

1

2

Next Rd
Addr

Compute

3

1.5KB
TB-SRAM1

1.5KB
TB-SRAM2

1.5KB
TB-SRAM64

1

2

3

Damla Senol Cali

Use Cases of GenASM
(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate
reference regions

(2) Pre-Alignment Filtering for Short Reads
o Quickly identify and filter out the unlikely candidate reference

regions for each read

(3) Edit Distance Calculation
o Measure the similarity or distance between two sequences

q We also discuss other possible use cases of GenASM in our paper:
o Read-to-read overlap finding, hash-table based indexing, whole

genome alignment, generic text search

41

Damla Senol Cali

Evaluation Methodology
q We evaluate GenASM using:
o Synthesized SystemVerilog models of the GenASM-DC and

GenASM-TB accelerator datapaths
o Detailed simulation-based performance modeling

q 16GB HMC-like 3D-stacked DRAM architecture
o 32 vaults
o 256GB/s of internal bandwidth, clock frequency of 1.25GHz
o In order to achieve high parallelism and low power-consumption
o Within each vault, the logic layer contains a GenASM-DC

accelerator, its associated DC-SRAM, a GenASM-TB accelerator,
and TB-SRAMs.

42

Damla Senol Cali

Evaluation Methodology (cont’d.)

43

SW Baselines HW Baselines

Read Alignment Minimap21
BWA-MEM2

GACT (Darwin)3
SillaX (GenAx)4

Pre-Alignment Filtering – Shouji5

Edit Distance Calculation Edlib6 ASAP7

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.
[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.
[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.

[7] S.S. Banerjee et al. ”ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.

Damla Senol Cali

Evaluation Methodology (cont’d.)
q For Use Case 1: Read Alignment, we compare GenASM with:

o Minimap2 and BWA-MEM (state-of-the-art SW)
§ Running on Intel® Xeon® Gold 6126 CPU (12-core) operating

@2.60GHz with 64GB DDR4 memory
§ Using two simulated datasets:

◦ Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate
◦ Short Illumina reads: 100-250bp reads, 5% error rate

o GACT of Darwin and SillaX of GenAx (state-of-the-art HW)
§ Open-source RTL for GACT
§ Data reported by the original work for SillaX
§ GACT is best for long reads, SillaX is best for short reads

44

Damla Senol Cali

Evaluation Methodology (cont’d.)
q For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

o Shouji (state-of-the-art HW – FPGA-based filter)
§ Using two datasets provided as test cases:
• 100bp reference-read pairs with an edit distance threshold of 5
• 250bp reference-read pairs with an edit distance threshold of 15

q For Use Case 3: Edit Distance Calculation, we compare GenASM with:

o Edlib (state-of-the-art SW)
§ Using two 100Kbp and 1Mbp sequences with similarity ranging

between 60%-99%

o ASAP (state-of-the-art HW – FPGA-based accelerator)
§ Using data reported by the original work

45

Damla Senol Cali

Key Results – Area and Power
q Based on our synthesis of GenASM-DC and GenASM-TB accelerator

datapaths using the Synopsys Design Compiler with a 28nm process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

Total (1 vault): 0.334 mm2 0.101 W
Total (32 vaults): 10.69 mm2 3.23 W

% of a Xeon CPU core: 1% 1%

46

0.049 0.016

0.013

0.256

Area (mm2)

0.033

0.004
0.009

0.055

Power (W)

0.033

0.004
0.009

0.055
Power (W)

GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)

0.033

0.004
0.009

0.055

Power (W)

GenASM-DC (64 PEs)
GenASM-TB
DC-SRAM (8 KB)
TB-SRAMs (64 x 1.5 KB)

Damla Senol Cali

Key Results – Area and Power
q Based on our synthesis of GenASM-DC and GenASM-TB accelerator

datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

47

0.049 0.016

0.013

0.256

Area (mm2)

0.033

0.004
0.009

0.055

Power (W)

0.033

0.004
0.009

0.055
Power (W)

GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)

0.033

0.004
0.009

0.055

Power (W)

GenASM-DC (64 PEs)
GenASM-TB
DC-SRAM (8 KB)
TB-SRAMs (64 x 1.5 KB)

GenASM has low area and power overheads

Damla Senol Cali

Key Results – Use Case 1
(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate
reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences

48

Damla Senol Cali

Key Results – Use Case 1 (Long Reads)

49

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

PacBio - 10% PacBio - 15% ONT - 10% ONT - 15% Average

Th
ro

ug
hp

ut
 (r
ea

ds
/s
ec

)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

GenASM achieves 648× and 116× speedup over
12-thread runs of BWA-MEM and Minimap2,

while reducing power consumption by 34× and 37×

648×
116×

SW

Damla Senol Cali

Key Results – Use Case 1 (Long Reads)

50

1.E+00

1.E+02

1.E+04

1.E+06

1Kbp 2Kbp 3Kbp 4Kbp 5Kbp 6Kbp 7Kbp 8Kbp 9Kbp 10Kbp AverageTh
ro

ug
hp

ut
(r
ea

ds
/s
ec

)

GACT (Darwin) GenASM

GenASM provides 3.9× better throughput,
6.6× the throughput per unit area, and
10.5× the throughput per unit power,

compared to GACT of Darwin

3.9×

HW

Damla Senol Cali

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08

Illumina-100bp Illumina-150bp Illumina-250bp Average

Th
ro

ug
hp

ut
 (r
ea

ds
/s
ec

)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)
Minimap2 (12-thread) GenASM (w/ Minimap2)

Key Results – Use Case 1 (Short Reads)

51

GenASM achieves 111× and 158× speedup over
12-thread runs of BWA-MEM and Minimap2,

while reducing power consumption by 33× and 31×

111× 158×

GenASM provides 1.9× better throughput and
uses 63% less logic area and 82% less logic power,

compared to SillaX of GenAx

HW

SW

Damla Senol Cali

Key Results – Use Case 2

52

(1) Read Alignment Step of Read Mapping
o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences

Damla Senol Cali

Key Results – Use Case 2
q Compared to Shouji:

o 3.7× speedup

o 1.7× less power consumption

o False accept rate of 0.02% for GenASM vs. 4% for Shouji

o False reject rate of 0% for both GenASM and Shouji

53

GenASM is more efficient in terms of
both speed and power consumption,

while significantly improving the accuracy
of pre-alignment filtering

HW

Damla Senol Cali

Key Results – Use Case 3

54

(1) Read Alignment Step of Read Mapping
o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences

Damla Senol Cali

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

99% 97% 94% 90% 80% 70% 60%

E
xe

cu
ti

on
 t

im
e
(µ
s)

Similarity between two sequences

Edlib (100 Kbp) GenASM (100 Kbp) Edlib (1 Mbp) GenASM (1 Mbp)

Key Results – Use Case 3

55

GenASM provides 146 – 1458× and 627 – 12501× speedup,
while reducing power consumption by 548× and 582×

for 100Kbp and 1Mbp sequences, respectively, compared to Edlib

GenASM provides 9.3 – 400× speedup over ASAP,
while consuming 67× less power

146× 1458×
627×

12501×

HW

SW

Damla Senol Cali

Additional Details in the Paper
q Details of the GenASM-DC and GenASM-TB algorithms

q Big-O analysis of the algorithms

q Detailed explanation of evaluated use cases

q Evaluation methodology details
(datasets, baselines, performance model)

q Additional results for the three evaluated use cases

q Sources of improvements in GenASM
(algorithm-level, hardware-level, technology-level)

q Discussion of four other potential use cases of GenASM

56

Damla Senol Cali

Summary of GenASM
q Problem:

o Genome sequence analysis is bottlenecked by the computational power and
memory bandwidth limitations of existing systems

o This bottleneck is particularly an issue for approximate string matching

q Key Contributions:
o GenASM: An approximate string matching (ASM) acceleration framework to

accelerate multiple steps of genome sequence analysis
§ First to enhance and accelerate Bitap for ASM with genomic sequences
§ Co-design of our modified scalable and memory-efficient algorithms with

low-power and area-efficient hardware accelerators
§ Evaluation of three different use cases: read alignment, pre-alignment

filtering, edit distance calculation

q Key Results: GenASM is significantly more efficient for all the three use cases
(in terms of throughput and throughput per unit power) than state-of-the-art
software and hardware baselines

57

Damla Senol Cali

GenASM [MICRO 2020]

58

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian,
Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna,
Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan,
Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis”
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO),
Virtual, October 2020.

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/

Damla Senol Cali

Research Contributions

59

Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework for
genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of
bitvector-based sequence alignment

[Ongoing]

SeGraM: Hardware acceleration framework for
sequence-to-graph mapping

[Ongoing]

Damla Senol Cali

BitMAc: FPGA-based GenASM

q Re-modified GenASM algorithms for a better mapping to the FPGA
resources

q Intra-level parallelism by instantiating multiple processing elements
(PEs) for the DC execution

q Inter-level parallelism by running multiple independent GenASM
executions in parallel

Our Goal:

Map GenASM accelerators to an FPGA with HBM2,
where HBM2 offers high memory bandwidth and

FPGA resources offer high parallelism by instantiating
multiple copies of the GenASM accelerators

60

Damla Senol Cali

Key Findings
q Based on the FPGA resources, the complete BitMAc design:

o 4 BitMAc accelerators connected to each pseudo-channel
(128 in total)

o Each BitMAc accelerator contains a DC accelerator with
16 PEs, a TB accelerator, an FSM, and 13.2KB of M20Ks

o Clocked at 200MHz

q BitMAc provides:
o 136× – 761× speedup over the state-of-the-art CPU baselines
o 6.8× – 19.4× speedup over the state-of-the-art GPU baseline

61

Damla Senol Cali

Key Findings (cont’d.)
q BitMAc has:
o 64% logic utilization and 90% on-chip memory utilization
o Total power consumption of 48.9W, where 59% accounts for

the M20Ks

q Bottlenecked by the amount of on-chip memory (i.e., M20Ks)

q Cannot saturate the high bandwidth that multiple HBM2 stacks
on the FPGA provide

q Need (1) algorithm-level modifications to decrease the amount
of data that need to be stored in M20Ks, and (2) newer FPGA
chips that provide a higher amount of on-chip memory capacity

62

Damla Senol Cali

Research Contributions

63

Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework for
genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of
bitvector-based sequence alignment

[Ongoing]

SeGraM: Hardware acceleration framework for
sequence-to-graph mapping

[Ongoing]

Damla Senol Cali

Recall: Read Mapping Pipeline

64

Indexing
(Pre-processing step to generate index of reference)

Seeding
(Query the index)

Pre-Alignment Filtering
(Filter out dissimilar sequences)

Read Alignment
(Perform distance/score calculation & traceback)

Reference
genome

Hash-table
based index

Potential mapping
locations

Optimal
alignment

Remaining
potential mapping
locations

Reads

Reference
segment

Query read

reference bias

Damla Senol Cali

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

65

Reference #1: ACGTACGT ACGTACGT

Damla Senol Cali

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

66

Reference #1: ACGTACGT

Reference #2: ACGGACGT

ACGTACGT

Damla Senol Cali

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

67

ACG ACGT

T

G

Reference #1: ACGTACGT

Reference #2: ACGGACGT

Damla Senol Cali

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

68

ACG ACGT

T

G

Reference #1: ACGTACGT

Reference #2: ACGGACGT

Reference #3: ACGTTACGT

Damla Senol Cali

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

69

ACG ACGT

T

G

T

Reference #1: ACGTACGT

Reference #2: ACGGACGT

Reference #3: ACGTTACGT

Damla Senol Cali

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

70

ACG ACGT

T

G

T

Reference #1: ACGTACGT

Reference #2: ACGGACGT

Reference #3: ACGTTACGT

Reference #4: ACGACGT

Damla Senol Cali

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

71

ACG ACGT

T

G

T

Reference #1: ACGTACGT

Reference #2: ACGGACGT

Reference #3: ACGTTACGT

Reference #4: ACGACGT

Damla Senol Cali

q Traditional read mapping causes reference bias

q Aligning sequences to graphs is a newer field and only a
few software tools exist for graph-based GSA

q Graph-based analysis exacerbates mapping’s bottlenecks

q Hardware acceleration of sequence-to-graph mapping:
important but unexplored research problem

Problem & Motivation

72

Damla Senol Cali

SeGraM:

q MinSeed: The first minimizer-based seeding hardware

q BitAlign: The first sequence-to-graph alignment hardware
based on modified GenASM algorithms and accelerators

SeGraM: First Graph Mapping Accelerator

73

Our Goal:
Design high-performance, scalable, power- and area-efficient

hardware accelerators that alleviate bottlenecks in both
the seeding and alignment steps of sequence-to-graph mapping

with support for both short and long reads

Damla Senol Cali

Overview of SeGraM

74

SeGraM

MinSeed (MS)

Host
CPU

Main Memory (graph-based reference & index)

Find
Minimizers

query
read

1

BitAlign (BA)

Read
Scratchpad

Minimizer
Scratchpad

Filter
Frequencies

Seed
Scratchpad

Calculate
Seed

Regions

DC-SRAM
(Input Scratchpad)

Generate
Bitvectors

Perform
Traceback

TB-SRAMs
(Bitvector Scratchpad)

Hop Queues

query k-mers

minimizers

frequencies seed locations graph nodes

2

3

4

5

6

7

8
9

10

11

Damla Senol Cali

MinSeed HW

75

Main Memory

Minimizer
Finder

Read
Scratchpad

(6 KB)

Minimizer
Scratchpad

(40 KB)

Frequency
Filter
(<?)

Seed
Scratchpad

(4 KB)

Seed Region
Calculator

(+/−/×)

query read

4 Bytes
(k-mer)

10 Bytes
(mini-
mizer)

frequency
threshold

8 Bytes
seed

minimizer
start (a),
minimizer
end (b),

seed
start (c),

seed
end (d)

error rate,
read length

candidate
sub-graph

2 Bytes
frequency

(1) Three computation modules responsible for finding the
minimizers, filtering the frequencies of minimizers, and finding the
associated regions of every seed location

(2) Three scratchpads for storing the query read, its minimizers, and
seed locations

(3) The memory interface, which handles the frequency, seed
location, and subgraph accesses

Damla Senol Cali

BitAlign HW

76

TB-SRAMx

PC

PEx

TB-SRAMx+1

PC

Pex+1

HopQueueRegisterx

R[d-1]

oldR[d] oldR[d-1]

HopBits

PatternBitmask

HopQueueRegisterx+1

R[d]

HopQueueRegisterx-1

oldR[d-1] oldR[d]
R[d]

q Linear cyclic systolic array-based accelerator

q Hop queue registers to incorporate the hops by feeding the

bitvectors of non-neighbor characters/nodes

Damla Senol Cali

Overall System of SeGraM

77

MinSeed

BitAlign

High Bandwidth Memory (HBM2)

MinSeed

BitAlign

MinSeed

BitAlign

MinSeed

BitAlign

. . .Host

Channels
(8× per HBM2 stack)

MinSeed HW
(1× per channel)

BitAlign HW
(1× per MinSeed HW)

q A single SeGraM consists of 8 MinSeed modules that exploit data-

level parallelism when performing seeding

q Each MinSeed module has exclusive access to one HBM2E channel

q Each MinSeed module is connected to a single BitAlign module

q We hide the latency of MinSeed when performing seeding while

running sequence-to-graph alignment with BitAlign

Damla Senol Cali

Use Cases of SeGraM
(1) End-to-End Sequence-to-Graph Mapping

o The whole SeGraM design (MinSeed + BitAlign) should be executed
o We support both short and long reads

(2) Sequence-to-Graph Alignment
o BitAlign can be executed by itself without the need of an initial

seeding tool/accelerator
o BitAlign can also be used for sequence-to-sequence alignment since it

is a special and simpler variant of sequence-to-graph alignment

(3) Seeding
o MinSeed only can be used as the seeding module for both graph-

based mapping and linear traditional mapping
o MinSeed is orthogonal to be coupled with any alignment tool or

accelerator

78

Damla Senol Cali

Evaluation Methodology
q We evaluate SeGraM using:

o Synthesized SystemVerilog models of the MinSeed and BitAlign

accelerator datapaths
o Simulation- and spreadsheet-based performance modeling

q 4 x 24GB HBM2E stacks, each with 8 independent channels
o 1 MinSeed and 1 BitAlign HW per each channel (32 in total)

q Baseline tools:
o GraphAligner and vg for sequence-to-graph mapping

o PaSGAL for sequence-to-graph alignment
o Darwin, GenAx, and GenASM for sequence-to-sequence alignment

q Simulated datasets for both short and long reads

79

Damla Senol Cali

Key Results – Area & Power

80

q Based on our synthesis of MinSeed and BitAlign accelerator datapaths
using the Synopsys Design Compiler with a 28nm process (@ 1GHz):

Damla Senol Cali

Key Results – SeGraM with Long Reads (I)

81

SeGraM provides 8.8× throughput improvement over
GraphAligner’s 12-thread execution,

while reducing the power consumption by 4.9×

1E+00

1E+01

1E+02

1E+03

PacBio - 5% PacBio - 10% ONT - 5% ONT - 10% Average

Th
ro

ug
hp

ut
 (l

on
g

re
ad

s/
se

c)
GraphAligner (t=12) SeGraM

8.8!

Damla Senol Cali 82

SeGraM provides 7.3× throughput improvement over
vg’s 12-thread execution,

while reducing the power consumption by 6.5×

Key Results – SeGraM with Long Reads (II)

1E+00

1E+01

1E+02

1E+03

PacBio - 5% PacBio - 10% ONT - 5% ONT - 10% AverageTh
ro

ug
hp

ut
 (l

on
g

re
ad

s/
se

c)
vg (t=12) SeGraM

7.3!

Damla Senol Cali 83

SeGraM provides 168× throughput improvement over
GraphAligner’s 12-thread execution,

while reducing the power consumption by 4.7×

Key Results – SeGraM with Short Reads (I)

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07

Illumina - 100bp Illumina - 150bp Illumina - 250bp AverageTh
ro

ug
hp

ut
 (s

ho
rt

 re
ad

s/
se

c)

GraphAligner (t=12) SeGraM

168!

Damla Senol Cali 84

SeGraM provides 726× throughput improvement over
vg’s 12-thread execution,

while reducing the power consumption by 4.9×

Key Results – SeGraM with Short Reads (II)

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07

Illumina - 100bp Illumina - 150bp Illumina - 250bp AverageTh
ro

ug
hp

ut
 (s

ho
rt

 re
ad

s/
se

c)

vg (t=12) SeGraM

726!

Damla Senol Cali 85

BitAlign provides 41×-539× speedup over
the 48-thread AVX512-supported

execution of PaSGAL

Key Results – BitAlign (Graph Alignment)

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

LRC-L1
(100bp x 317.6K reads)

LRC-L2
(10Kbp x 3.2K reads)

MHC1-M1
(100bp x 497K reads)

MHC1-M2
(10Kbp x 4.9K reads)

Average

Ex
ec

ut
io

n
ti

m
e

(m
s)

PaSGAL (t=48) SeGraM

41!

539!
67!

513!
247!

Damla Senol Cali 86

Key Results – BitAlign (Linear Alignment)
q BitAlign can be used for both sequence-to-sequence alignment

and sequence-to-graph alignment
o The cost of more functionality: Extra hop queue registers in

BitAlign
o However, we do not sacrifice any performance

q For long reads (over GACT of Darwin and GenASM):
o 4.8× and 1.2× throughput improvement,
o 1.9× and 5.2× higher power consumption, and
o 1.4× and 2.3× higher area overhead

q For short reads (over SillaX of GenAx and GenASM):
o 2.4× and 1.3× throughput improvement

Damla Senol Cali

Summary of SeGraM
Problem:

o Traditional read mapping causes reference bias
o Aligning sequences to graphs is a newer field and only a few software

tools exist for graph-based GSA
o Graph-based analysis exacerbates mapping’s bottlenecks
o Hardware acceleration of sequence-to-graph mapping: important but

unexplored research problem

Key Contributions:
o SeGraM: First acceleration framework for sequence-to-graph mapping
§ MinSeed: First minimizer-based seeding accelerator
§ BitAlign: First sequence-to-graph alignment accelerator based upon

our new bitvector-based, highly-parallel algorithm

Key Results: SeGraM and BitAlign provide significant speedups compared
to the software baselines, while reducing the power consumption

87

Damla Senol Cali

Research Contributions

88

Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework for
genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of
bitvector-based sequence alignment

[Ongoing]

SeGraM: Hardware acceleration framework for
sequence-to-graph mapping

[Ongoing]

Damla Senol Cali

Conclusion

Rapid genome sequence analysis is bottlenecked
by the computational power and memory

bandwidth limitations of existing systems,
as many of the steps in genome sequence

analysis must process a large amount of data

89

Damla Senol Cali

Conclusion (cont’d.)

Genome sequence analysis can be accelerated
by co-designing fast and efficient algorithms

along with scalable and energy-efficient
customized hardware accelerators

for the key bottleneck steps of the pipeline

90

Damla Senol Cali

Conclusion (cont’d.)

91

Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework for
genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of
bitvector-based sequence alignment

[Ongoing]

SeGraM: Hardware acceleration framework for
sequence-to-graph mapping

[Ongoing]

Damla Senol Cali

Future Work
q Incorporating a Filtering Approach for SeGraM

q GenASM-based Algorithm for Sequence Alignment with the
Affine Gap Model

q End-to-End Acceleration of the Mapping Pipeline

q Accelerating Assembly with Long Reads

92

Damla Senol Cali
Staff Software Engineer, Hardware Acceleration

Bionano Genomics

Email: damlasenolcali@gmail.com

Website: https://damlasenolcali.github.io

SAFARI Live Seminar

November 7, 2021

Accelerating Genome Sequence Analysis via
Efficient Hardware/Algorithm Co-Design

mailto:damlasenolcali@gmail.com
https://damlasenolcali.github.io/

Damla Senol Cali

Other Publications @ SAFARI
FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications (IEEE Micro, 2021)

Gagandeep Singh, Mohammed Alser, Damla Senol Cali, Dionysios Diamantopoulos, Juan
Gomez-Luna, Henk Corporaal, and Onur Mutlu.

Accelerating Genome Analysis: A Primer on an Ongoing Journey (IEEE Micro, 2020)
Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can Alkan,
and Onur Mutlu.

Apollo: A Sequencing-Technology-Independent, Scalable, and Accurate Assembly Polishing Algorithm
(Bioinformatics, 2020)

Can Firtina, Jeremie S. Kim, Mohammed Alser, Damla Senol Cali, A. Ercument Cicek, Can Alkan,
and Onur Mutlu.

Demystifying Workload–DRAM Interactions: An Experimental Study (ACM SIGMETRICS, 2019)
Saugata Ghose, Tianshi Li, Nastaran Hajinazar, Damla Senol Cali, and Onur Mutlu.

GRIM-Filter: Fast Seed Location Filtering in DNA Read Mapping Using Processing-in-Memory
Technologies (BMC Genomics, 2018)

Jeremie S. Kim, Damla Senol Cali, Hongyi Xin, Donghyuk Lee, Saugata Ghose, Mohammed
Alser, Hasan Hassan, Oguz Ergin, Can Alkan, and Onur Mutlu.

94

Backup Slides
(Sequencing)

Damla Senol Cali

Cost of Sequencing

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

96

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Damla Senol Cali

Cost of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

97

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Damla Senol Cali

Sequencing of SARS-CoV-2
Why genome sequencing and sequence data analysis
are important?

qTo detect the virus from a human sample

qTo understand the sources and modes of transmission of the virus

qTo sequence the genome of the virus itself, COVID-19, in order to
track the mutations in the virus

qTo explore the genes of infected patients
o To understand why some people get more severe symptoms

than others

o To help with the development of new treatments

98

Damla Senol Cali

COVID-19Research with ONT

• From ONT (https://nanoporetech.com/covid-19/overview)

99

https://nanoporetech.com/covid-19/overview

Damla Senol Cali

Future of Genome Sequencing & Analysis

100

SmidgION from ONT

MinION from ONT

Damla Senol Cali

COVID-19Research with ONT (cont’d.)

• From ONT (https://nanoporetech.com/covid-19/overview)

101

https://nanoporetech.com/covid-19/overview

Backup Slides
(Nanopore)

Damla Senol Cali

Nanopore Sequencing Technology

q Nanopore sequencing is an emerging and a
promising single-molecule DNA sequencing
technology.

q First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore
Technologies (ONT) in May 2014.
o Inexpensive
o Long read length (>882Kbp)
o Produces data in real time
o Pocket-sized and portable

103

Damla Senol Cali

Nanopore Sequencing

q Nanopore is a nano-scale hole.
q In nanopore sequencers, an ionic current passes through the

nanopores.
q When the DNA strand passes through the nanopore, the

sequencer measures the change in current.
q This change is used to identify the bases in the strand with the

help of different electrochemical structures of the different
bases.

104

Damla Senol Cali

Step 1: Basecalling

ACTGTCGAGTCGTAGAGA…TTT

TAGTATATATTTTGGGGT…TAA

TTTGTCGAGTCGTAGAGA…TAG

105

Basecalling

Read-to-
Read Overlap

Finding

Assembly

DNA reads

Assembled genome

Overlaps

Raw signal data Translates the raw signal output into bases to
generate DNA reads.

Damla Senol Cali

Step 2: Read-to-Read Overlap Finding

ACTGTCGAGTCGT…TTT

ACTTATATATTTTT…TTT

TTTGTCGAGTCGT…ACT

106

Basecalling

Read-to-
Read Overlap

Finding

Assembly

DNA reads

Assembled genome

Overlaps

Raw signal data Read-to-read overlap
o is a common sequence between two reads, and
o occurs when the matched regions of these reads

originate from the same part of the complete
genome.

ACTGTCGAGTCGT…TTT

ACTTATATATTTTT…TTT

Damla Senol Cali

Step 3: Assembly

ACTGTCGAGTCGT…TTT

TAGTATATATTTTT…TAA

TTTGTCGAGTCGT…TAG

ACTGTCGAGTCGT…TTT

ACTTATATATTTTT…TTT

TTTGTCGAGTCGT…ACT

ACTGTCGAGTCGT…TTTTTTGTCGAGTCGT…ACTACTTATATATTTTT…TTT

107

Basecalling

Read-to-
Read Overlap

Finding

Assembly

DNA reads

Assembled genome

Overlaps

Raw signal data Assembly algorithms,
o generate an overlap graph with the overlaps

from the previous step,
o traverse this graph, then
o construct the assembled genome.

ACTTATATATTTTT…TTTTTTGTCGAGTCGT…ACTACTGTCGAGTCGT…TTT

Which one is correct?

Damla Senol Cali

Experimental Methodology

108

Damla Senol Cali

Experimental Methodology (cont’d.)
Accuracy Metrics
q Average Identity : Percentage similarity between the assembly and

the reference genome
q Coverage: Ratio of the #aligned bases in the reference genome to

the length of reference genome
q Number of mismatches: Total number of single-base differences

between the assembly and the reference genome
q Number of indels: Total number of insertions and deletions

between the assembly and the reference genome

Performance Metrics
q Wall clock time
q Peak memory usage
q Parallel speedup

109

Using /usr/bin/time & perf

Damla Senol Cali

Experimental Methodology

110

Basecalling

Read-to-Read Overlap Finding

Assembly

Read Mapping

Polishing

Damla Senol Cali

q Metrichor
o ONT’s cloud-based basecaller
o Uses recurrent neural networks (RNN) for basecalling

q Nanonet
o ONT’s offline and open-source alternative for Metrichor
o Uses RNN for basecalling

q Scrappie
o ONT’s newest basecaller that explicitly addresses basecalling errors in

homopolymer regions

q Nanocall [David+, Bioinformatics 2016]
o Uses Hidden Markov Models (HMM) for basecalling

q DeepNano [Boža+, PloS One 2017]
o Uses RNN for basecalling

111

Nanopore Basecalling Tools

Damla Senol Cali

q GraphMap [Sovic +́, Nature Communications 2016]

o First partitions the entire read data set into k-length substrings (i.e.,
k-mers), and then stores them in a hash table with the positions.

o Detects the overlaps by finding the k-mer similarity between any two
given reads, using the generated hash table.

q Minimap [Li+, Bioinformatics 2016]

o Partitions the entire read data set into k-mers, but instead of
creating a hash table for the full set of k-mers, finds the minimum
representative set of k-mers, called minimizers, and creates a hash
table with only these minimizers.

o Finds the overlaps between two reads by finding minimizer
similarity.

112

Read-to-Read Overlap Finding Tools

Damla Senol Cali

GraphMap vs. Minimap
q GraphMap

o Finds k-mers and store them in hash table with the positions.

o Finds overlaps between two reads by k-mer similarity.

113

…ACGTACGT
...

…ACGTACGT

…ACGTACGT

…ACGTACGT

…ACGTACGT

TACGTATA…

TACGTATA…

TACGTATA…

TACGTATA…

TACGTATA…
...

Read 1: Read 2:

k-mers for
Read 1:

k-mers for
Read 2:

Damla Senol Cali

GraphMap vs. Minimap
q Minimap

o Finds minimum representative set of k-mers, i.e. minimizers and
store them in hash table, instead of storing all k-mers.

o Finds overlaps between two reads by minimizer similarity.

114

…ACGTACGT
...

…ACGTACGT

…ACGTACGT

…ACGTACGT

…ACGTACGT

TACGTATA…

TACGTATA…

TACGTATA…

TACGTATA…

TACGTATA…
...

Read 1: Read 2:

minimizers
for Read 1:

ACG
CGT

minimizers
for Read 2:

TAC
ACG
CGT
ATA

Damla Senol Cali

q Canu [Koren+, Genome Research 2017]

o Performs error-correction as the initial step of its own pipeline
§ Improves the accuracy of the bases in the reads
§ Computationally-expensive

o After the error-correction step, finds overlaps between corrected
reads and constructs a draft assembly

q Miniasm [Li+, Bioinformatics 2016]

o Skips the error-correction step, and constructs the draft assembly
from the uncorrected read overlaps computed in the previous step.

o Lowers computational cost but the accuracy of the draft assembly
depends directly on the accuracy of the uncorrected basecalled
reads.

115

Assembly Tools

Damla Senol Cali

q Read Mapping tools
o BWA-MEM [Li, arXiv 2013]

§ Commonly used long-read mapper

o GraphMap and Minimap (from Step 2)

q Polishing tools

o Nanopolish [Loman+, Nature Methods 2015]
§ HMM-based approach for polishing

o Racon [Vaser+, Genome Research 2017]
§ Alignment graph-based approach for polishing

116

Read Mapping & Polishing Tools

Damla Senol Cali

Nanopore Genome Assembly Pipeline

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing
Tools: Nanopolish, Racon

Raw signal
data

Improved
assembly

DNA reads

Overlaps

Draft
assembly

Mappings of
reads against

draft assembly

Assembly

117

Damla Senol Cali

Nanopore Genome Assembly Pipeline

118

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing
Tools: Nanopolish, Racon

Raw signal
data

Improved
assembly

DNA reads

Overlaps

Draft
assembly

Mappings of
reads against

draft assembly

Assembly

Pipeline A: [Basecalling tool]
+ Canu

Pipeline B: [Basecalling tool]
+ GraphMap + Miniasm

Pipeline C: [Basecalling tool]
+ Minimap + Miniasm

Damla Senol Cali

Basecalling – Accuracy

119

0

50

100

150

200

250

300

350

400

450

0

10

20

30

40

50

60

70

80

90

100

PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C

(K

B
p)

Pe
rc

en
ta

ge
 (%

)

Accuracy Analysis Results for Basecalling Tools

Identity (%) Coverage (%) # Mismatches # Indels

Scrappie Nanocall DeepNanoNanonetMetrichor
Observation 1-a: Metrichor, Nanonet and Scrappie have similar

identity and coverage trends among all of the evaluated
scenarios.

Damla Senol Cali

Basecalling – Accuracy

120

0

50

100

150

200

250

300

350

400

450

0

10

20

30

40

50

60

70

80

90

100

PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C

(K

B
p)

Pe
rc

en
ta

ge
 (%

)

Accuracy Analysis Results for Basecalling Tools

Identity (%) Coverage (%) # Mismatches # Indels

Scrappie Nanocall DeepNanoNanonetMetrichor
Observation 1-b: However, Nanocall and DeepNano cannot

reach these three basecallers’ accuracies: they have lower identity
and lower coverage.

Damla Senol Cali

Basecalling – Accuracy

121

0

50

100

150

200

250

300

350

400

450

0

10

20

30

40

50

60

70

80

90

100

PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C

(K

B
p)

Pe
rc

en
ta

ge
 (%

)

Accuracy Analysis Results for Basecalling Tools

Identity (%) Coverage (%) # Mismatches # Indels

Scrappie Nanocall DeepNanoNanonetMetrichor

Observation 1-c: Scrappie has the highest accuracy with the
lowest number of mismatches and indels.

Damla Senol Cali

Basecalling – Speed

122

Observation 2: RNN-based basecallers, Nanonet and Scrappie
are faster than HMM-based basecaller, Nanocall.

Damla Senol Cali

Basecalling – Speed

123

Observation 3: When #threads=1, desktop is approximately 2x
faster than big-mem because of desktop’s higher CPU frequency.
It is an indication that all of these three tools are computationally

expensive.

Damla Senol Cali

Basecalling – Memory

124

Observation 4: Scrappie and Nanocall have a linear increase in
memory usage when number of threads increases. In contrast,

Nanonet has a constant memory usage for all evaluated thread
units.

Damla Senol Cali

Basecalling – Speedup

125

Observation 5: When the number of threads exceeds the number
of physical cores, the simultaneous multithreading overhead
prevents continued linear speedup of Nanonet, Scrappie and

Nanocall because of the CPU-intensive workload of these tools.

Damla Senol Cali

Basecalling – Key Observations
Accuracy:

q ONT’s basecallers (i.e., Metrichor, Nanonet and Scrappie) have similar identity
and coverage trends among all of the evaluated scenarios. However, other two
basecallers (i.e., Nanocall and DeepNano) cannot reach these three basecallers’
accuracies: they have lower identity and lower coverage

q Scrappie has the highest accuracy with the lowest number of mismatches and
indels

Performance:

q RNN-based basecallers are faster than HMM-based basecaller

Memory Usage:

q Scrappie and Nanocall have a linear increase in memory usage when number of
threads increases. In contrast, Nanonet has a constant memory usage for all
evaluated thread units

Scalability:

q Data sharing between threads degrades the parallel speedup of Nanonet when
cores from multiple NUMA nodes take role in the computation

126

Damla Senol Cali

Basecalling – Key Observations
Accuracy:

q ONT’s basecallers (i.e., Metrichor, Nanonet and Scrappie) have similar identity
and coverage trends among all of the evaluated scenarios. However, other two
basecallers (i.e., Nanocall and DeepNano) cannot reach these three basecallers’
accuracies: they have lower identity and lower coverage

q Scrappie has the highest accuracy with the lowest number of mismatches and
indels

Performance:

q RNN-based basecallers are faster than HMM-based basecaller

Memory Usage:

q Scrappie and Nanocall have a linear increase in memory usage when number of
threads increases. In contrast, Nanonet has a constant memory usage for all
evaluated thread units

Scalability:

q Data sharing between threads degrades the parallel speedup of Nanonet when
cores from multiple NUMA nodes take role in the computation

127

Damla Senol Cali

Basecalling – Summary
q The choice of the tool for the basecalling step plays an

important role to overcome the high error rates of nanopore
sequencing technology.

q Basecalling with RNNs (e.g. Metrichor, Nanonet, Scrappie)
provides higher accuracy and higher speed than basecalling
with HMMs.

q The newest basecaller of ONT, Scrappie, also has the potential
to overcome the homopolymer basecalling problem.

128

Damla Senol Cali

Nanopore Genome Assembly Pipeline

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing
Tools: Nanopolish, Racon

Raw signal
data

Improved
assembly

DNA reads

Overlaps

Draft
assembly

Mappings of
reads against

draft assembly

Assembly

129

Damla Senol Cali

Nanopore Genome Assembly Pipeline

130

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing
Tools: Nanopolish, Racon

Raw signal
data

Improved
assembly

DNA reads

Overlaps

Draft
assembly

Mappings of
reads against

draft assembly

Assembly

Pipeline A: Metrichor +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline B: Nanonet +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline C: Scrappie +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline D: Nanocall +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline E: DeepNano +
[R-to-R Overlap Finding tool] + Miniasm

Damla Senol Cali

R-to-R Overlap Finding – Accuracy

131

0
50
100
150
200
250
300
350
400
450

0
10
20
30
40
50
60
70
80
90

100

PL.A PL.B PL.C PL.D PL.E PL.A PL.B PL.C PL.D PL.E

(K

B
p)

Pe
rc

en
ta

ge
 (%

)

Accuracy Analysis Results for Read-to-Read Overlap Finding Tools

Identity (%) Coverage (%) # Mismatches # Indels

GraphMap Minimap

Observation 5: Pipelines with GraphMap or Minimap end up with
similar accuracy results.

Damla Senol Cali

R-to-R Overlap Finding – Performance

132

Observation 6: The memory usage of both GraphMap and
Minimap is dependent on the hash table size but independent of

number of threads. Minimap requires 4.6x less memory than
GraphMap, on average.

Damla Senol Cali

R-to-R Overlap Finding – Performance

133

Observation 7: Minimap is 2.5x faster than GraphMap, on
average. Since in Minimap, the size of dataset that needs to be

scanned is greatly shrunk by storing minimizers instead of k-mers,
it performs much less computation than GraphMap.

Damla Senol Cali

R-to-R Overlap Finding – Speedup

134

Damla Senol Cali

R-to-R Overlap Finding – Key Observations
Accuracy:

q Pipelines with GraphMap or Minimap end up with similar accuracy results.

Memory Usage:

q The memory usage of both GraphMap and Minimap is dependent on the
hash table size but independent of number of threads. Minimap requires
4.6x less memory than GraphMap, on average.

Performance:

q Minimap is 2.5x faster than GraphMap, on average.

135

Damla Senol Cali

R-to-R Overlap Finding – Summary
q Storing minimizers instead of all k-mers, as done by Minimap,

does not affect the overall accuracy of the first three steps of
the pipeline.

q By storing minimizers, Minimap has a much lower memory
usage and thus much higher performance than GraphMap.

136

Damla Senol Cali

Nanopore Genome Assembly Pipeline

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing
Tools: Nanopolish, Racon

Raw signal
data

Improved
assembly

DNA reads

Overlaps

Draft
assembly

Mappings of
reads against

draft assembly

Assembly

137

Damla Senol Cali

Assembly – Accuracy & Performance

138

Observation 8: Canu provides higher accuracy than Miniasm,
with the help of the error-correction step that is present in its own

pipeline. On average, Canu provides 96.1% identity whereas
Miniasm provides 84.4% identity.

Observation 9: Canu is much more computationally intensive
and greatly (i.e., by 1096.3x) slower than Miniasm, because of its

very expensive error-correction step.

Damla Senol Cali

Assembly – Summary
q There is a trade-off between accuracy and performance when

deciding on the appropriate tool for the assembly step.

q Canu produces highly accurate assemblies, but it is resource
intensive and slow. In contrast, Miniasm is a fast assembler,
but it cannot produce as accurate draft assemblies as Canu.

q Miniasm can potentially be used for fast initial analysis and
then further polishing can be applied in the next step to
produce higher-quality assemblies.

139

Damla Senol Cali

Nanopore Genome Assembly Pipeline

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping (optional)
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing (optional)
Tools: Nanopolish, Racon

Raw signal
data

Improved
assembly

DNA reads

Overlaps

Draft
assembly

Mappings of
reads against

draft assembly

Assembly

140

Damla Senol Cali

Read Mapping & Polishing – Accuracy

141

Observation 11: Both Nanopolish and Racon significantly
increase the accuracy of the draft assemblies.

For example, Nanopolish increases the identity and coverage of the draft
assembly generated with the Metrichor+Minimap+Miniasm pipeline from

87.71% and 94.85%, respectively, to 92.33% and 96.31%.
Similarly, Racon increases them to 97.70% and 99.91%, respectively.

Observation 12: For Racon, the choice of read mapper does not
affect the accuracy of the polishing step.

Damla Senol Cali

Read Mapping & Polishing – Speed

142

Observation 13: Nanopolish is computationally much more
intensive and thus greatly slower than Racon.

Nanopolish runs take days to complete whereas Racon runs take minutes.
This is mainly because Nanopolish works on each base individually, whereas
Racon works on the windows. Since each window is much longer (i.e., 20kb)
than a single base, the computational workload is greatly smaller in Racon.

Observation 14: BWA-MEM is computationally more expensive
than Minimap.

Although the choice of BWA-MEM and Minimap for the read mapping step
does not affect the accuracy of the polishing step, these two tools have a

significant difference in performance.

Damla Senol Cali

Read Mapping & Polishing – Summary
q Further polishing can significantly increase the accuracy of the

assemblies.

q Pipelines with Minimap and Racon can provide a significant
speedup compared with the pipelines with BWA-MEM and
Nanopolish, while resulting with high-quality consensus
sequences.

143

Damla Senol Cali

Nanopore Sequencing & Tools [BiB 2018]

144

Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can Alkan, and Onur Mutlu,
"Nanopore Sequencing Technology and Tools for Genome Assembly:
Computational Analysis of the Current State, Bottlenecks and Future
Directions."
Briefings in Bioinformatics, April 2018.

Backup Slides
(GenASM)

Genome
Analysis

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read
Alignment

 CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

Source: Prof. Onur Mutlu’s lecture slides

146

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture3a-genomeanalysisintroduction-afterlecture.pdf

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read
Alignment

 CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

TATATATACGTACTAGTACGT

ACGACTTTAGTACGTACGT
TATATATACGTACTAGTACGT

ACGTACG CCCCTACGTA

ACGACTTTAGTACGTACGT
TATATATACGTACTAAAGTACGT

CCCCCCTATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT

TATATATACGTACTAGTACGT
ACG TTTTTAAAACGTA

ACGACGGGGAGTACGTACGT

Billions of Short Reads

1 2Sequencing Read Mapping

3 4Variant Calling Scientific Discovery

300 M
bases/min

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC
GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC
GAGTCAGAATTTGAC GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC
GAGTCAGAATTTGAC

Illumina HiSeq4000

2 M
bases/min

on average

(0.6%)

Bottlenecked in Mapping!!

Source: Prof. Onur Mutlu’s lecture slides

147

https://safari.ethz.ch/architecture/fall2020/lib/exe/fetch.php?media=onur-comparch-fall2020-lecture3a-genomeanalysisintroduction-afterlecture.pdf

Illumina’s DRAGEN

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT
processor for precision medicine”, Open Journal of Genetics, 2017.

https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

Illumina’s DRAGEN

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT
processor for precision medicine”, Open Journal of Genetics, 2017.

https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC
GAGTCAGAATTTGAC GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

GAGTCAGAATTTGAC

Bottlenecked in Read Mapping!!

Human whole
genomes

Human 1
Illumina NovaSeq 6000

48
at 30× coverage

in about 2 days

genome
32 CPU hours

on a 48-core processor

71%

29%

Read Mapping Others

Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM bio-IT
processor for precision medicine”, Open Journal of Genetics, 2017.

https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

Damla Senol Cali

candidate
alignment locations

(CAL)
4%

Read Alignment
93%

SAM
printing

3%

What Makes Read Mapper Slow?

93%
of the read mapper’s

execution time is spent in

read alignment.

Alser et al, Bioinformatics (2017)

What Makes Read Mapper Slow? (cont’d.)

of candidate locations

have high dissimilarity

with a given read.

98%

Cheng et al, BMC bioinformatics (2015)
Xin et al, BMC genomics (2013)

A C T T A G C A C T

0 1 2

A 1 0 1 2

C 2 1 0 1 2

T 2 1 0 1 2

A 2 1 2 1 2

G 2 2 2 1 2

A 3 2 2 2 2

A 3 3 3 2 3

C 4 3 3 2 3

T 4 4 3 2

T 5 4 3

Short Read

... ...
Reference Genome

Read
Alignment

 CC T AT AAT ACG
C
C
A
T
A
T
A
T
A
C
G

Damla Senol Cali

N E T H E R L A N D S

0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10

W 2 2 2 3 4 5 6 7 8 9 10 11

I 3 3 3 3 4 5 6 7 8 9 10 11

T 4 4 4 3 4 5 6 7 8 9 10 11

Z 5 5 5 4 4 5 6 7 8 9 10 11

E 6 6 5 5 5 4 5 6 7 8 9 10

R 7 7 6 6 6 5 4 5 6 7 8 9

L 8 8 7 7 7 6 5 4 5 6 7 8

A 9 9 8 8 8 7 6 5 4 5 6 7

N 10 9 9 9 9 8 7 6 5 4 5 6

D 11 10 10 10 10 9 8 7 6 5 4 5

What Makes Read Mapper Slow? (cont’d.)

q Quadratic-time dynamic-programming
algorithm

n Data dependencies limit the
computation parallelism

n Entire matrix is computed even
though strings can be
dissimilar.

Enumerating all possible prefixes

Processing row (or column) after another

Number of differences is computed only at the backtraking step.

153

Damla Senol Cali

Approximate String Matching (ASM)
Approximate string matching algorithms:

q Smith-Waterman (SW) algorithm [Smith+, Advances in Applied Mathematics 1981]
o Dynamic programming (DP) algorithm, with quadratic time and space

complexity
o Common algorithm used by read mappers

q Myers’ bitvector algorithm [Myers, Journal of the ACM 1999]
o Transformed version of SW algorithm into bitvectors and bitwise operations

q Bitap algorithm [Baeza-Yates+, Communications of the ACM 1992]
o [Wu+, Communications of the ACM 1992] extended Bitap to perform

approximate string matching
o Bitvectors and bitwise operations

We have focused on the Bitap algorithm.
à Reason: Bitap algorithm can perform ASM with fast and simple bitwise operations,
which makes it amenable to efficient hardware acceleration.

154

Damla Senol Cali

CPU Systems

Plenty of cache per core

Low latency, low throughput processors

Less compute, more cache

155

Damla Senol Cali

Evaluation Methodology (CPU-bitap)

Ø Vtune analysis on a real system
q System Configuration:

o Intel Core i5-6600K CPU
@ 3.50GHz (Skylake)

o Single socket, 4 physical
cores, 1 thread per core

o 32KB L1 private caches,
256KB L2 private caches, 6MB
shared LLC

o 32GB main memory
q Analysis Details:

o HPC performance
characterization

o Hardware events for MPKIs
and cache hit/miss rates of
each level of cache

o Hotspot analysis

Ø Gem5 + Ramulator Simulations
q Gem5 Configuration:

o CPU type: O3 (detailed)
o Number of cores= Number of threads = 1,

2, 4, 8, 16, 32, 64
o Private L1 size = 64KB each
o Private L2 size = 512KB each
o Shared L3 size = # cores * 1MB
o Main memory type = LPDDR4 vs. HBM
o Main memory size = 16GB

q Analysis Details:
o Execution-driven simulation
o Scalability, memory-intensity (cache

usage, memory bandwidth, and memory
latency) and possible bottlenecks analysis
§ With and without L2/L3 caches

156

Damla Senol Cali

Results (CPU-bitap)

157

Damla Senol Cali

Results (CPU-bitap)
Ø CPU-bitap is very compute-intensive and not memory-bound.

Ø Lots of computation for one byte of data movement

q L1-MPKI: 0.196, L2-MPKI: 0.086, LLC-MPKI: 0.037, and

q Very high L1-hit rate (99.895%)

Ø Adding more cores provides a linear speedup

Ø Since the working set fits within the registers and the L1 cache and the
number of memory requests is very low:

q No performance difference without L2 and L3 caches

q No performance difference between LPDDR4 or HBM as the memory

158

Damla Senol Cali

GPU Systems

Less cache per core

High latency, high throughput processors

More compute, less cache

159

Damla Senol Cali

Evaluation Methodology (GPU-bitap)

Ø nvprof analysis on a real system
q System Configuration:

o Nvidia Titan V GPU (Volta)
o 80 multiprocessors * 64 CUDA cores per MP = 5120 CUDA cores
o L2 cache size = 4.5MB
o Warp size = 32

o 12GB HBM2 memory
q Analysis Details:

o Events:

§ Elapsed and active cycles
o Metrics:
§ Branch and warp execution efficiency
§ L2 read/write transactions and throughput

§ DRAM read/write transactions and throughput
§ Stalls (i.e., instruction fetch, execution dependency, memory dependency,

and busy compute pipeline)

160

Damla Senol Cali

Results (GPU-bitap)

Compute-bound Shared cache-bound

161

Damla Senol Cali

Results (GPU-bitap)
Ø From 1 thread per block to 32 threads per block,

q GPU-bitap is compute-bound, and

q Warp execution efficiency increases from 3% to 100%, linearly.

Ø GPU-bitap is shared cache-bound (i.e., on-GPU L2 cache-bound) after
number of threads per block reaches 32.

q Small number of registers à not enough to hold the frequently used
data

q Number of L2 read transactions stops decreasing and becomes stable

Ø Bottlenecks:

q Shared memory and L2 cache accesses

q Destructive interference of threads

162

Damla Senol Cali

Example for the Bitap Algorithm

163

PREPROCESSING
Pattern Bitmasks:

CTGA
PM(A) = 1110
PM(C) = 0111
PM(G) = 1101
PM(T) = 1011

State Vectors:

R0 = 1111
R1 = 1111

Text[4]: CGTGA
oldR0 = 1111
oldR1 = 1111

R0 = (oldR0 << 1) | PM(A)
= 1110

R1 =

= D & S & I & M = 1100

0 1

D : oldR0 = 1111
S : oldR0 << 1 = 1110
I : R0 << 1 = 1100
M : (oldR1 << 1) | PM(A) = 1110

Text[3]: CGTGA
oldR0 = 1110
oldR1 = 1100

R0 = (oldR0 << 1) | PM(G)
= 1101

R1 =

= D & S & I & M = 1000

2

D : oldR0 = 1110
S : oldR0 << 1 = 1100
I : R0 << 1 = 1010
M : (oldR1 << 1) | PM(G) = 1101

Text[2]: CGTGA
oldR0 = 1101
oldR1 = 1000

R0 = (oldR0 << 1) | PM(T)
= 1011

R1 =

= D & S & I & M = 0000

3

D : oldR0 = 1101
S : oldR0 << 1 = 1010
I : R0 << 1 = 0110
M : (oldR1 << 1) | PM(T) = 1011

Alignment Found @ Location=2

Text[1]: CGTGA
oldR0 = 1011
oldR1 = 0000

R0 = (oldR0 << 1) | PM(G)
= 1111

R1 =

= D & S & I & M = 0000

4

D : oldR0 = 1011
S : oldR0 << 1 = 0110
I : R0 << 1 = 1110
M : (oldR1 << 1) | PM(G) = 1101

Alignment Found @ Location=1

Text[0]: CGTGA
oldR0 = 1111
oldR1 = 0000

R0 = (oldR0 << 1) | PM(C)
= 1111

R1 =

= D & S & I & M = 0110

5

D : oldR0 = 1111
S : oldR0 << 1 = 1110
I : R0 << 1 = 1110
M : (oldR1 << 1) | PM(C) = 0111

Alignment Found @ Location=0

Text Region:
CGTGA

Query Pattern:
CTGA

Edit Distance
Threshold (k):

1

Damla Senol Cali

GenASM Algorithm
q GenASM-DC Algorithm:

o Modified Bitap for Distance Calculation
o Extended for efficient long read support
o Besides bit-parallelism that Bitap has, extended for parallelism:

§ Loop unrolling
§ Text-level parallelism

q GenASM-TB Algorithm:
o Novel Bitap-compatible TraceBack algorithm
o Walks through the intermediate bitvectors (match, deletion,

substitution, insertion) generated by GenASM-DC
o Follows a divide-and-conquer approach to decrease the

memory footprint

164

Damla Senol Cali

Loop Unrolling in GenASM-DC

165

Cycle#
Thread1

R0/4
Thread2

R1/5
Thread3

R2/6
Thread4

R3/7

#1 T0-R0 − − −
#2 T1-R0 T0-R1 − −
#3 T2-R0 T1-R1 T0-R2 −
#4 T3-R0 T2-R1 T1-R2 T0-R3
#5 T0-R4 T3-R1 T2-R2 T1-R3
#6 T1-R4 T0-R5 T3-R2 T2-R3
#7 T2-R4 T1-R5 T0-R6 T3-R3
#8 T3-R4 T2-R5 T1-R6 T0-R7
#9 − T3-R5 T2-R6 T1-R7

#10 − − T3-R6 T2-R7
#11 − − − T3-R7

target cell (Rd)
cells target cell depends on (oldRd, Rd-1, oldRd-1)

data written to memory
data read from memory

Cycle#
Thread1

R0/1/2/..

#1 T0-R0
… …

#8 T0-R7
#9 T1-R0
… …

#16 T1-R7
#17 T2-R0
… …

#24 T2-R7
#25 T3-R0

… …
#32 T3-R7

Damla Senol Cali

Traceback Example with GenASM-TB

166

Deletion Example (Text Location=0)

Text[0]: C Text[1]: G Text[2]: T Text[3]: G Text[4]: A

Match(C) Del(–) Match(T) Match(G) Match(A)
<3,0,1> <2,1,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-M : 0111

R0- :
R1-D : 1011

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Substitution Example (Text Location=1)

Text[1]: G Text[2]: T Text[3]: G Text[4]: A

Subs(C) Match(T) Match(G) Match(A)
<3,1,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-S : 0110

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Insertion Example (Text Location=2)

Text[–] Text[2]: T Text[3]: G Text[4]: A

Ins(C) Match(T) Match(G) Match(A)
<3,2,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-I : 0110

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Damla Senol Cali

GenASM [MICRO 2020]

167

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian,
Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna,
Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan,
Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis”
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO),
Virtual, October 2020.

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/

Backup Slides
(BitMAc)

Damla Senol Cali

Intel Stratix 10 MX

169

PC0 PC1 PC6 PC7PC2 PC3 PC8 PC9 PC14 PC15PC10 PC11 PC12 PC13PC4 PC5

eSRAM

eSRAM HBM2 IP (Top)

HBM2 IP (Bottom)

Core
Logic
Fabric

M20K
Embedded

Memory
Blocks

M20K
Embedded

Memory
Blocks

Core
Logic
Fabric

M20K
Embedded

Memory
Blocks

HBM2 (Top)

PC0 PC1 PC6 PC7PC2 PC3 PC8 PC9 PC14 PC15PC10 PC11 PC12 PC13PC4 PC5

HBM2 (Bottom)

Damla Senol Cali

BitMAc Design

170

HBM2 Pseudo-channel

text buffer pattern buffer CIGAR buffer

PMs buffer

PM Generator

DC Logic (16 Processing Elements)

M20Ks (as TB-SRAMs)

TB Logic

wr_address
counter

textConsumed

patConsumed

curError

curPattern

curText

Done?

…

rdText

text

rdPat

pattern bitmasks

minError

wrCIGAR

rdAddrwrAddr

CIGAR
output

intermediate
bitvectors

done

Damla Senol Cali

BitMAc – Results

171

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

PacBio - 10% PacBio - 15% ONT - 10% ONT - 15% Average

Th
ro

ug
hp

ut
 (r
ea

ds
/s
ec

)

BWA-MEM (t=12) BitMAc (w/ pairs from BWA-MEM) Minimap2 (t=12) BitMAc (w/ pairs from Minimap2)

761 !

136 !

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

1E+07

1E+08

Illumina-100bp Illumina-150bp Illumina-250bp Average

Th
ro

ug
hp

ut
 (r
ea

ds
/s
ec

)

BWA-MEM (t=12) BitMAc (w/ pairs from BWA-MEM) Minimap2 (t=12) BitMAc (w/ pairs from Minimap2)

92 !
130 !

Damla Senol Cali

BitMAc – Results

172

Component Dynamic On-Chip
Power Dissipation

Total On-Chip
Power Dissipation

DC Logic (16 PEs) 128.57 mW

TB Logic 10.24 mW

FSM Logic 3.15 mW

M20Ks 211.61 mW

Other 15.72 mW

Total − 1 BitMAc Accelerator 369.29 mW (0.4 W) 6043.24 mW (6.0 W)

Total − 32 BitMAc Accelerators
(1 per each pseudo-channel) 11569.92 mW (11.6 W) 17234.67 mW (17.2 W)

Total − 128 BitMAc Accelerators
(4 per each pseudo-channel) 43042.90 mW (43 W) 48935.65 mW (48.9 W)

Damla Senol Cali

BitMAc – Results

173

Configuration Logic Utilization M20K eSRAM DSP

1 BitMAc Accelerator 0.5% 0.7% 0% 0%

32 BitMAc Accelerators
(1 per each pseudo-channel) 17.7% 22.4% 0% 0%

128 BitMAc Accelerators
(4 per each pseudo-channel) 64.3% 89.7% 0% 0%

Backup Slides
(SeGraM)

Damla Senol Cali

SeGraM – Graph Structure

175

Nodes table

.

.

.

seq. #out
length edges

Characters
table

Edges table

.

.

.

2-bit
char

.

.

.

4B edge info

Damla Senol Cali

SeGraM – Index Structure

176

First-level: Buckets

.

.

.

Second-level: Minimizers Third-level: Locations

#minimizers

.

.

.

hash value #locations

.

.

.

node ID offset

Damla Senol Cali

Minimizers

177

Position 1 2 3 4 5 6 7

Sequence A G T A G C A

Full set of
k-mers
with
minimizer
in red

A G T

G T A

T A G

A G C

G C A

Damla Senol Cali

BitAlign Algorithm

178

Damla Senol Cali

SeGraM – Hops

179

Damla Senol Cali

Recall: GenASM-DC’s HW Design

180

Damla Senol Cali

BitAlign – Hop Length Dist Plots

181

Damla Senol Cali

Hop Length Dist Plots (cont’d.)

182

Damla Senol Cali

DP-based Graph Alignment

From PaSGAL paper

183

https://ieeexplore.ieee.org/abstract/document/8821047

Damla Senol Cali

DP-based Graph Alignment (cont’d.)

From abPOA paper

“abPOA processes all the vectors in a row-by-row manner following the partial
order of the graph. During the DP process, for “match” and “delete”
operations (diagonal and vertical moves in the DP matrix), all scores stored in
each SIMD vector can be updated in parallel as they only rely on scores in the
predecessor rows. For “insert” operations (horizontal moves in the DP matrix),
sequential non-parallel updating of scores in the same SIMD vector is needed,
as the score of each cell depends on the score of the cell on the left.”

184

https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btaa963/5962085?redirectedFrom=fulltext

Damla Senol Cali

“A region of a yeast genome variation graph”
from vg paper [Garrison et al., Nature Biotechnology, 2018]

185

https://www.nature.com/articles/nbt.4227

