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Genome Sequencing
q Genome sequencing: Enables us to determine the order of the DNA 

sequence in an organism’s genome

o Plays a pivotal role in:
§ Personalized medicine
§ Outbreak tracing
§ Understanding of evolution

q Challenges:
o There is no sequencing machine that takes long DNA as an input, 

and gives the complete sequence as output
o Sequencing machines extract small randomized fragments of the 

original DNA sequence
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Genome Sequencing (cont’d.)
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Sample Collection

Preparation

Sequencing

Genome Sequence 
Analysis

Large DNA 
molecule

Chopped DNA 
fragments

Sequenced 
reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT

ACGACGTAGCT

AAAAAAAAAA

ACGAGCGGGT
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Sequencing Technologies
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Short reads: a few hundred base pairs and error rate of ∼0.1%
Long reads: thousands to millions of base pairs and error rate of 5–10%

Oxford Nanopore 
(ONT)

PacBio Illumina
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Current State of Sequencing
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Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)
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https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)
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Computation is a bottleneck!

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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Problem Statement

Rapid genome sequence analysis is currently 
bottlenecked by the computational power 

and memory bandwidth limitations of 
existing systems, as many of the steps 

in genome sequence analysis must process 
a large amount of data
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Our Goal & Approach
q Our Goal: 

Accelerating genome sequence analysis by efficient 
hardware/algorithm co-design

q Our Approach:
(1) Analyze the multiple steps and the associated tools in 

the genome sequence analysis pipeline,
(2) Expose the tradeoffs between accuracy, performance, 

memory usage and scalability, and 
(3) Co-design fast and efficient algorithms along with 

scalable and energy-efficient customized hardware 
accelerators for the key bottleneck steps of the pipeline
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Research Statement

Genome sequence analysis 
can be accelerated by co-designing 

fast and efficient algorithms along with 
scalable and energy-efficient customized 

hardware accelerators for the 
key bottleneck steps of the pipeline
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Research Contributions

11

Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework for 
genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing]

SeGraM: Hardware acceleration framework for 
sequence-to-graph mapping 

[Ongoing]
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Research Contributions
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Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework for 
genome sequence analysis

[MICRO 2020] 

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing] 

SeGraM: Hardware acceleration framework for 
sequence-to-graph mapping 

[Ongoing] 
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Read Mapping, method of aligning the 
reads against the reference genome in 

order to detect matches and variations.

ACGTACCCCGT
GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of 
merging the reads in order to construct

the original sequence.

Reference
Genome

Original
Sequence

Genome Sequence Analysis
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Reads Mapped Reads Reads Assembled Reads
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Genome Assembly Pipeline Using Long Reads

Basecalling
(Translates signal data into bases: A,C,G,T)

Read-to-Read Overlap Finding
(Finds pairwise read alignments for each pair of read)

Assembly
(Traverses the overlap graph & constructs the draft assembly)

Read Mapping
(Maps the reads to the draft assembly)

Raw signal 
data

Assembly

DNA reads

Overlaps

Draft assembly

Improved 
assembly

Polishing
(Polishes the draft assembly & increases the accuracy)

Mappings of 
reads against 
draft assembly

q With the emergence of long read sequencing technologies, de novo assembly 
becomes a promising way of constructing the original genome. 
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Our Contributions

q Analyze the tools in multiple dimensions: accuracy, 
performance, memory usage, and scalability

q Reveal new bottlenecks and trade-offs

q First study on bottleneck analysis of nanopore sequence 
analysis pipeline on real machines

q Provide guidelines for practitioners

q Provide guidelines for tool developers
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Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that increase the memory requirements
o Algorithms that are not cache-efficient
o Not keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage
o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads

16



Damla Senol Cali

Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints,
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that increase the memory requirements
o Algorithms that are not cache-efficient
o Not keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage
o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads
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Goal 1:
High-performance and low-power
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Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints,
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that can minimize the memory requirements
o Cache-efficient algorithms
o Keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage
o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads
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Goal 1:
High-performance and low-power

Goal 2:
Memory-efficient
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Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints,
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that can minimize the memory requirements
o Cache-efficient algorithms
o Keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage.
o Dividing the input data into batches
o Limiting the memory usage of each thread
o Dividing the computation instead of the dataset between simultaneous threads
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Goal 1:
High-performance and low-power

Goal 2:
Memory-efficient

Goal 3:
Scalable/highly-parallel
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Nanopore Sequencing & Tools [BiB 2018]
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Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can Alkan, and Onur Mutlu, 
"Nanopore Sequencing Technology and Tools for Genome Assembly: 
Computational Analysis of the Current State, Bottlenecks and Future 
Directions"
Briefings in Bioinformatics, April 2018.

https://arxiv.org/pdf/1711.08774.pdf
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Research Contributions
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Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018] 

GenASM: Approximate string matching framework for 
genome sequence analysis

[MICRO 2020] 

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing] 

SeGraM: Hardware acceleration framework for 
sequence-to-graph mapping 

[Ongoing] 
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Read Mapping, method of aligning the 
reads against the reference genome in 

order to detect matches and variations.

ACGTACCCCGT
GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of 
merging the reads in order to construct

the original sequence.

Recall: Genome Sequence Analysis
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Read Mapping Pipeline
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Indexing
(Pre-processing step to generate index of reference)

Seeding
(Query the index)

Pre-Alignment Filtering
(Filter out dissimilar sequences)

Read Alignment
(Perform distance/score calculation & traceback)

Reference
genome

Hash-table 
based index

Potential mapping 
locations

Optimal 
alignment

Remaining 
potential mapping 
locations

Reads

Reference
segment

Query read
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GSA with Read Mapping
q Read mapping: First key step in genome sequence analysis (GSA)

o Aligns reads to one or more possible locations within          
the reference genome, and

o Finds the matches and differences between the read and 
the reference genome segment at that location 

q Multiple steps of read mapping require approximate string matching

o Approximate string matching (ASM) enables read mapping to 
account for sequencing errors and genetic variations in the reads

q Bottlenecked by the computational power and memory bandwidth 
limitations of existing systems

24
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GenASM: ASM Framework for GSA

q GenASM: First ASM acceleration framework for GSA
o Based upon the Bitap algorithm 

§ Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm
§ Highly-parallel Bitap with long read support
§ Novel bitvector-based algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms 
with low-power and area-efficient hardware accelerators

Our Goal:
Accelerate approximate string matching 

by designing a fast and flexible framework, 
which can accelerate multiple steps of genome sequence analysis

25
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q Sequenced genome may not exactly map to the reference genome due 
to genetic variations and sequencing errors

q Approximate string matching (ASM):
o Detect the differences and similarities between two sequences
o In genomics, ASM is required to:

§ Find the minimum edit distance (i.e., total number of differences)
§ Find the optimal alignment with a traceback step

◦ Sequence of matches, substitutions, insertions and deletions,       
along with their positions

o Usually implemented as a dynamic programming (DP) based algorithm

Approximate String Matching

26

Reference:
Read:

insertionsubstitutiondeletion

A A A AT G T T TA G T G C TA C T G
A A AT G T T TA C T G C TA C T T G
A A A AT G T T TA G T G C TA C T G
A A A AT G T T TA C T G C TA C T T G
A A A AT G T T TA G T G C TA C T G
A A A AT G T T TA G T G C TA C T T G
A A A AT G T T TA G T G C TA C T T G
A A A AT G T T TA G T G C TA C T T GC

A
T

G
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DP-based ASM

27

Commonly-used 
algorithm for ASM 

in genomics…

...with quadratic 
time and space 

complexity
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Bitap Algorithm
q Bitap1,2 performs ASM with fast and simple bitwise operations

o Amenable to efficient hardware acceleration
o Computes the minimum edit distance between a text (e.g., reference 

genome) and a pattern (e.g., read) with a maximum of k errors 

q Step 1: Pre-processing (per pattern)
o Generate a pattern bitmask (PM) for each character in the alphabet  

(A, C, G, T)
o Each PM indicates if character exists at each position of the pattern

q Step 2: Searching (Edit Distance Calculation)
o Compare all characters of the text with the pattern by using:

§ Pattern bitmasks 
§ Status bitvectors that hold the partial matches 
§ Bitwise operations

[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.
[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.
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Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take 

place sequentially

29
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Bitap Algorithm (cont’d.)

Large number of 
iterations

q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1
insertion         = R[d-1] << 1
match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.

30
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Bitap Algorithm (cont’d.)

Data dependency 
between iterations 

(i.e., no 
parallelization)

q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1
insertion         = R[d-1] << 1
match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.
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Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take 

place sequentially

2) No Support for Traceback:
o Bitap does not include any support for optimal alignment identification

32
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Bitap Algorithm (cont’d.)
q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1
insertion         = R[d-1] << 1
match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.

33

Does not store and process 
these intermediate bitvectors 
to find the optimal alignment 

(i.e., no traceback)
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Hardware

Algorithm

Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take 

place sequentially

2) No Support for Traceback:
o Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:
o Each bitvector has a length equal to the length of the pattern
o Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:
o Text-level parallelism
o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:
o High memory bandwidth required to read and write the computed 

bitvectors to memory

34
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SW

HW

GenASM: ASM Framework for GSA
q Approximate string matching (ASM) acceleration framework based 

on the Bitap algorithm

q First ASM acceleration framework for genome sequence analysis

q We overcome the five limitations that hinder Bitap’s use in genome 
sequence analysis:

o Modified and extended ASM algorithm

§ Highly-parallel Bitap with long read support

§ Novel bitvector-based algorithm to perform traceback

o Specialized, low-power and area-efficient hardware for              
both modified Bitap and novel traceback algorithms

35
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GenASM-DC GenASM-TB

GenASM Hardware Design

36

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.
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GenASM Hardware Design
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GenASM-DC GenASM-TB

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.

reference 
& query 

locations

Write 
bitvectors

reference 
text 

& query 
pattern

sub-text & 
sub-pattern

Read 
bitvectors

Generate 
bitvectors

2

1

3

4

5 6

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Read 
bitvectors

6
Write 

bitvectors

5

Generate 
bitvectors 4

sub-text & 
sub-pattern3

reference 
text 

& query 
pattern

2

reference 
& query 

locations

1

Find the 
traceback output

7
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GenASM Hardware Design
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GenASM-DC GenASM-TB

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.

reference 
& query 

locations

Write 
bitvectors

reference 
text 

& query 
pattern

sub-text & 
sub-pattern

Read 
bitvectors

Find the 
traceback output

Generate 
bitvectors

2

1

3

4

5 6

7

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Our specialized compute units and on-chip SRAMs help us to: 
à Match the rate of computation with memory capacity and bandwidth 

à Achieve high performance and power efficiency
à Scale linearly in performance with                                                                     

the number of parallel compute units that we add to the system



Damla Senol Cali

GenASM-DC: Hardware Design
q Linear cyclic systolic array-based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint

39

Processing Block (PB)

Processing Core (PC)

OldR[d-1] <<

<<

<<

R[d-1]

OldR[d]

PatternMask Match

R[d]

Substitution

Insertion

Deletion

OldR
out

PM 
out

PM
out

OldR in

PM in
PC

PE1

PC

PE2

PC

PEp-1

PC

PEp

OldR
out

PC

PE

DC-SRAM

TB-SRAMp-1

Intermediate Bitvectors

TB-SRAMpTB-SRAM2TB-SRAM1
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Bitwise 
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192 insertion

deletion

subs

64

64

64

64

1

2

Next Rd 
Addr

Compute

3

GenASM-TB

GenASM-TB: Hardware Design

q Very simple logic: 
❶Reads the bitvectors from one of the TB-SRAMs using the computed 
address 
❷Performs the required bitwise comparisons to find the traceback output 
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors
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Bitwise 
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192 insertion

deletion

subs

64

64

64

64

to main 
memory

1

2

Next Rd 
Addr

Compute

3

1.5KB
TB-SRAM1

1.5KB
TB-SRAM2

1.5KB
TB-SRAM64

1

2

3
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Use Cases of GenASM
(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 
reference regions

(2) Pre-Alignment Filtering for Short Reads
o Quickly identify and filter out the unlikely candidate reference 

regions for each read

(3) Edit Distance Calculation
o Measure the similarity or distance between two sequences

q We also discuss other possible use cases of GenASM in our paper:
o Read-to-read overlap finding, hash-table based indexing, whole 

genome alignment, generic text search

41
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Evaluation Methodology
q We evaluate GenASM using:
o Synthesized SystemVerilog models of the GenASM-DC and 

GenASM-TB accelerator datapaths 
o Detailed simulation-based performance modeling

q 16GB HMC-like 3D-stacked DRAM architecture
o 32 vaults 
o 256GB/s of internal bandwidth, clock frequency of 1.25GHz
o In order to achieve high parallelism and low power-consumption
o Within each vault, the logic layer contains a GenASM-DC 

accelerator, its associated DC-SRAM, a GenASM-TB accelerator, 
and TB-SRAMs.

42
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Evaluation Methodology (cont’d.)

43

SW Baselines HW Baselines

Read Alignment Minimap21
BWA-MEM2

GACT (Darwin)3
SillaX (GenAx)4

Pre-Alignment Filtering – Shouji5

Edit Distance Calculation Edlib6 ASAP7

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.
[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.
[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.

[7] S.S. Banerjee et al. ”ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.
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Evaluation Methodology (cont’d.)
q For Use Case 1: Read Alignment, we compare GenASM with:

o Minimap2 and BWA-MEM (state-of-the-art SW)
§ Running on Intel® Xeon® Gold 6126 CPU (12-core) operating 

@2.60GHz with 64GB DDR4 memory
§ Using two simulated datasets:

◦ Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate
◦ Short Illumina reads: 100-250bp reads, 5% error rate

o GACT of Darwin and SillaX of GenAx (state-of-the-art HW)
§ Open-source RTL for GACT
§ Data reported by the original work for SillaX
§ GACT is best for long reads, SillaX is best for short reads

44
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Evaluation Methodology (cont’d.)
q For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

o Shouji (state-of-the-art HW – FPGA-based filter)
§ Using two datasets provided as test cases:
• 100bp reference-read pairs with an edit distance threshold of 5
• 250bp reference-read pairs with an edit distance threshold of 15

q For Use Case 3: Edit Distance Calculation, we compare GenASM with:

o Edlib (state-of-the-art SW)
§ Using two 100Kbp and 1Mbp sequences with similarity ranging 

between 60%-99%

o ASAP (state-of-the-art HW – FPGA-based accelerator)
§ Using data reported by the original work

45
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Key Results – Area and Power
q Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

Total (1 vault): 0.334 mm2 0.101 W
Total (32 vaults): 10.69 mm2 3.23 W

% of a Xeon CPU core: 1% 1%

46
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Power (W)
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GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)
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0.055

Power (W)

GenASM-DC (64 PEs)
GenASM-TB
DC-SRAM (8 KB)
TB-SRAMs (64 x 1.5 KB)
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Key Results – Area and Power
q Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz
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0.256

Area (mm2)

0.033

0.004
0.009
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0.004
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Power (W)

GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)
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0.004
0.009

0.055

Power (W)

GenASM-DC (64 PEs)
GenASM-TB
DC-SRAM (8 KB)
TB-SRAMs (64 x 1.5 KB)

GenASM has low area and power overheads
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Key Results – Use Case 1
(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 
reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences

48
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Key Results – Use Case 1 (Long Reads)
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1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06
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ut
 (r
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/s
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)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

GenASM achieves 648× and 116× speedup over 
12-thread runs of BWA-MEM and Minimap2, 

while reducing power consumption by 34× and 37×

648×
116×

SW
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Key Results – Use Case 1 (Long Reads)
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GenASM provides 3.9× better throughput, 
6.6× the throughput per unit area, and 
10.5× the throughput per unit power, 

compared to GACT of Darwin

3.9×

HW
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Key Results – Use Case 1 (Short Reads)
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GenASM achieves 111× and 158× speedup over 
12-thread runs of BWA-MEM and Minimap2, 

while reducing power consumption by 33× and 31×

111× 158×

GenASM provides 1.9× better throughput and 
uses 63% less logic area and 82% less logic power, 

compared to SillaX of GenAx

HW

SW
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Key Results – Use Case 2

52

(1) Read Alignment Step of Read Mapping
o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences
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Key Results – Use Case 2
q Compared to Shouji:

o 3.7× speedup

o 1.7× less power consumption

o False accept rate of 0.02% for GenASM vs. 4% for Shouji

o False reject rate of 0% for both GenASM and Shouji

53

GenASM is more efficient in terms of 
both speed and power consumption, 

while significantly improving the accuracy 
of pre-alignment filtering

HW



Damla Senol Cali

Key Results – Use Case 3
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(1) Read Alignment Step of Read Mapping
o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences
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Key Results – Use Case 3
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GenASM provides 146 – 1458× and 627 – 12501× speedup, 
while reducing power consumption by 548× and 582×

for 100Kbp and 1Mbp sequences, respectively, compared to Edlib

GenASM provides 9.3 – 400× speedup over ASAP, 
while consuming 67× less power

146× 1458×
627×

12501×

HW

SW
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Additional Details in the Paper
q Details of the GenASM-DC and GenASM-TB algorithms

q Big-O analysis of the algorithms

q Detailed explanation of evaluated use cases

q Evaluation methodology details                                             
(datasets, baselines, performance model)

q Additional results for the three evaluated use cases

q Sources of improvements in GenASM                             
(algorithm-level, hardware-level, technology-level)

q Discussion of four other potential use cases of GenASM 
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Summary of GenASM
q Problem: 

o Genome sequence analysis is bottlenecked by the computational power and
memory bandwidth limitations of existing systems

o This bottleneck is particularly an issue for approximate string matching

q Key Contributions: 
o GenASM: An approximate string matching (ASM) acceleration framework to 

accelerate multiple steps of genome sequence analysis
§ First to enhance and accelerate Bitap for ASM with genomic sequences
§ Co-design of our modified scalable and memory-efficient algorithms with 

low-power and area-efficient hardware accelerators
§ Evaluation of three different use cases: read alignment, pre-alignment 

filtering, edit distance calculation

q Key Results: GenASM is significantly more efficient for all the three use cases 
(in terms of throughput and throughput per unit power) than state-of-the-art 
software and hardware baselines
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GenASM [MICRO 2020]

58

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, 
Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, 
Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, 
Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis”
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), 
Virtual, October 2020.

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
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Research Contributions

59

Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018] 

GenASM: Approximate string matching framework for 
genome sequence analysis

[MICRO 2020] 

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing] 

SeGraM: Hardware acceleration framework for 
sequence-to-graph mapping 

[Ongoing] 
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BitMAc: FPGA-based GenASM

q Re-modified GenASM algorithms for a better mapping to the FPGA 
resources 

q Intra-level parallelism by instantiating multiple processing elements 
(PEs) for the DC execution

q Inter-level parallelism by running multiple independent GenASM 
executions in parallel

Our Goal:

Map GenASM accelerators to an FPGA with HBM2, 
where HBM2 offers high memory bandwidth and 

FPGA resources offer high parallelism by instantiating 
multiple copies of the GenASM accelerators
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Key Findings
q Based on the FPGA resources, the complete BitMAc design:

o 4 BitMAc accelerators connected to each pseudo-channel 
(128 in total)

o Each BitMAc accelerator contains a DC accelerator with       
16 PEs, a TB accelerator, an FSM, and 13.2KB of M20Ks 

o Clocked at 200MHz

q BitMAc provides: 
o 136× – 761× speedup over the state-of-the-art CPU baselines
o 6.8× – 19.4× speedup over the state-of-the-art GPU baseline
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Key Findings (cont’d.)
q BitMAc has:
o 64% logic utilization and 90% on-chip memory utilization
o Total power consumption of 48.9W, where 59% accounts for 

the M20Ks

q Bottlenecked by the amount of on-chip memory (i.e., M20Ks)

q Cannot saturate the high bandwidth that multiple HBM2 stacks 
on the FPGA provide

q Need (1) algorithm-level modifications to decrease the amount 
of data that need to be stored in M20Ks, and (2) newer FPGA 
chips that provide a higher amount of on-chip memory capacity
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Research Contributions

63

Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018] 

GenASM: Approximate string matching framework for 
genome sequence analysis

[MICRO 2020] 

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing] 

SeGraM: Hardware acceleration framework for 
sequence-to-graph mapping 

[Ongoing] 
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Recall: Read Mapping Pipeline

64

Indexing
(Pre-processing step to generate index of reference)

Seeding
(Query the index)

Pre-Alignment Filtering
(Filter out dissimilar sequences)

Read Alignment
(Perform distance/score calculation & traceback)

Reference
genome

Hash-table 
based index

Potential mapping 
locations

Optimal 
alignment

Remaining 
potential mapping 
locations

Reads

Reference
segment

Query read

reference bias
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity

65

Reference #1: ACGTACGT ACGTACGT
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity

66

Reference #1: ACGTACGT

Reference #2: ACGGACGT

ACGTACGT
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity

68
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity
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q Traditional read mapping causes reference bias

q Aligning sequences to graphs is a newer field and only a 
few software tools exist for graph-based GSA

q Graph-based analysis exacerbates mapping’s bottlenecks 

q Hardware acceleration of sequence-to-graph mapping: 
important but unexplored research problem

Problem & Motivation
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SeGraM: 

q MinSeed: The first minimizer-based seeding hardware

q BitAlign: The first sequence-to-graph alignment hardware 
based on modified GenASM algorithms and accelerators

SeGraM: First Graph Mapping Accelerator

73

Our Goal:
Design high-performance, scalable, power- and area-efficient 

hardware accelerators that alleviate bottlenecks in both
the seeding and alignment steps of sequence-to-graph mapping

with support for both short and long reads
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Overview of SeGraM
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SeGraM

MinSeed (MS)

Host 
CPU

Main Memory (graph-based reference & index)

Find 
Minimizers

query
read

1

BitAlign (BA)

Read
Scratchpad

Minimizer 
Scratchpad

Filter
Frequencies

Seed 
Scratchpad

Calculate
Seed 

Regions

DC-SRAM
(Input Scratchpad)

Generate 
Bitvectors

Perform
Traceback

TB-SRAMs
(Bitvector Scratchpad)

Hop Queues

query k-mers

minimizers

frequencies seed locations graph nodes

2

3

4

5

6

7

8
9

10

11
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MinSeed HW
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Main Memory

Minimizer
Finder

Read
Scratchpad

(6 KB)

Minimizer 
Scratchpad

(40 KB)

Frequency 
Filter
(<?)

Seed 
Scratchpad

(4 KB)

Seed Region
Calculator

(+/−/×)

query read

4 Bytes
(k-mer)

10 Bytes
(mini-
mizer)

frequency 
threshold

8 Bytes
seed

minimizer
start (a),
minimizer 
end (b),

seed 
start (c),

seed 
end (d)

error rate, 
read length

candidate 
sub-graph

2 Bytes 
frequency

(1) Three computation modules responsible for finding the 
minimizers, filtering the frequencies of minimizers, and finding the 
associated regions of every seed location

(2) Three scratchpads for storing the query read, its minimizers, and 
seed locations

(3) The memory interface, which handles the frequency, seed 
location, and subgraph accesses
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BitAlign HW
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TB-SRAMx

PC

PEx

TB-SRAMx+1

PC

Pex+1

HopQueueRegisterx

R[d-1]

oldR[d] oldR[d-1]

HopBits

PatternBitmask

HopQueueRegisterx+1

R[d]

HopQueueRegisterx-1

oldR[d-1] oldR[d]
R[d]

q Linear cyclic systolic array-based accelerator

q Hop queue registers to incorporate the hops by feeding the 

bitvectors of non-neighbor characters/nodes
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Overall System of SeGraM
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MinSeed

BitAlign

High Bandwidth Memory (HBM2)

MinSeed

BitAlign

MinSeed

BitAlign

MinSeed

BitAlign

. . .Host

Channels 
(8× per HBM2 stack)

MinSeed HW
(1× per channel)

BitAlign HW
(1× per MinSeed HW)

q A single SeGraM consists of 8 MinSeed modules that exploit  data-

level parallelism when performing seeding 

q Each MinSeed module has exclusive access to one HBM2E channel

q Each MinSeed module is connected to a single BitAlign module

q We hide the latency of MinSeed when performing seeding while 

running sequence-to-graph alignment with BitAlign 
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Use Cases of SeGraM
(1) End-to-End Sequence-to-Graph Mapping

o The whole SeGraM design (MinSeed + BitAlign) should be executed 
o We support both short and long reads 

(2) Sequence-to-Graph Alignment
o BitAlign can be executed by itself without the need of an initial 

seeding tool/accelerator 
o BitAlign can also be used for sequence-to-sequence alignment since it 

is a special and simpler variant of sequence-to-graph alignment 

(3) Seeding
o MinSeed only can be used as the seeding module for both graph-

based mapping and linear traditional mapping
o MinSeed is orthogonal to be coupled with any alignment tool or 

accelerator
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Evaluation Methodology
q We evaluate SeGraM using:

o Synthesized SystemVerilog models of the MinSeed and BitAlign 

accelerator datapaths 
o Simulation- and spreadsheet-based performance modeling

q 4 x 24GB HBM2E stacks, each with 8 independent channels
o 1 MinSeed and 1 BitAlign HW per each channel (32 in total)

q Baseline tools: 
o GraphAligner and vg for sequence-to-graph mapping

o PaSGAL for sequence-to-graph alignment
o Darwin, GenAx, and GenASM for sequence-to-sequence alignment

q Simulated datasets  for both short and long reads
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Key Results – Area & Power

80

q Based on our synthesis of MinSeed and BitAlign accelerator datapaths 
using the Synopsys Design Compiler with a 28nm process (@ 1GHz):
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Key Results – SeGraM with Long Reads (I)

81

SeGraM provides 8.8× throughput improvement over 
GraphAligner’s 12-thread execution, 

while reducing the power consumption by 4.9×
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SeGraM provides 7.3× throughput improvement over 
vg’s 12-thread execution, 

while reducing the power consumption by 6.5×

Key Results – SeGraM with Long Reads (II)
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SeGraM provides 168× throughput improvement over 
GraphAligner’s 12-thread execution, 

while reducing the power consumption by 4.7×

Key Results – SeGraM with Short Reads (I)
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SeGraM provides 726× throughput improvement over 
vg’s 12-thread execution, 

while reducing the power consumption by 4.9×

Key Results – SeGraM with Short Reads (II)
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BitAlign provides 41×-539× speedup over
the 48-thread AVX512-supported 

execution of PaSGAL

Key Results – BitAlign (Graph Alignment)
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Key Results – BitAlign (Linear Alignment)
q BitAlign can be used for both sequence-to-sequence alignment 

and sequence-to-graph alignment 
o The cost of more functionality: Extra hop queue registers in 

BitAlign
o However, we do not sacrifice any performance 

q For long reads (over GACT of Darwin and GenASM): 
o 4.8× and 1.2× throughput improvement, 
o 1.9× and 5.2× higher power consumption, and 
o 1.4× and 2.3× higher area overhead

q For short reads (over SillaX of GenAx and GenASM):
o 2.4× and 1.3× throughput improvement
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Summary of SeGraM
Problem: 

o Traditional read mapping causes reference bias
o Aligning sequences to graphs is a newer field and only a few software 

tools exist for graph-based GSA
o Graph-based analysis exacerbates mapping’s bottlenecks 
o Hardware acceleration of sequence-to-graph mapping: important but 

unexplored research problem

Key Contributions: 
o SeGraM: First acceleration framework for sequence-to-graph mapping
§ MinSeed: First minimizer-based seeding accelerator
§ BitAlign: First sequence-to-graph alignment accelerator based upon 

our new bitvector-based, highly-parallel algorithm

Key Results: SeGraM and BitAlign provide significant speedups compared 
to the software baselines, while reducing the power consumption
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Research Contributions
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Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018] 

GenASM: Approximate string matching framework for 
genome sequence analysis

[MICRO 2020] 

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing] 

SeGraM: Hardware acceleration framework for 
sequence-to-graph mapping 

[Ongoing] 
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Conclusion

Rapid genome sequence analysis is bottlenecked
by the computational power and memory 

bandwidth limitations of existing systems,      
as many of the steps in genome sequence 

analysis must process a large amount of data
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Conclusion (cont’d.)

Genome sequence analysis can be accelerated
by co-designing fast and efficient algorithms

along with scalable and energy-efficient 
customized hardware accelerators

for the key bottleneck steps of the pipeline
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Conclusion (cont’d.)
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Bottleneck analysis of genome assembly pipeline for long reads
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework for 
genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing]

SeGraM: Hardware acceleration framework for 
sequence-to-graph mapping 

[Ongoing]
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Future Work
q Incorporating a Filtering Approach for SeGraM

q GenASM-based Algorithm for Sequence Alignment with the 
Affine Gap Model

q End-to-End Acceleration of the Mapping Pipeline

q Accelerating Assembly with Long Reads
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Other Publications @ SAFARI
FPGA-based Near-Memory Acceleration of Modern Data-Intensive Applications (IEEE Micro, 2021)
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Accelerating Genome Analysis: A Primer on an Ongoing Journey (IEEE Micro, 2020)
Mohammed Alser, Zulal Bingol, Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can Alkan, 
and Onur Mutlu. 

Apollo: A Sequencing-Technology-Independent, Scalable, and Accurate Assembly Polishing Algorithm 
(Bioinformatics, 2020)

Can Firtina, Jeremie S. Kim, Mohammed Alser, Damla Senol Cali, A. Ercument Cicek, Can Alkan, 
and Onur Mutlu. 

Demystifying Workload–DRAM Interactions: An Experimental Study (ACM SIGMETRICS, 2019)
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Cost of Sequencing

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)
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Cost of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)
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Sequencing of SARS-CoV-2
Why genome sequencing and sequence data analysis 
are important?

qTo detect the virus from a human sample

qTo understand the sources and modes of transmission of the virus

qTo sequence the genome of the virus itself, COVID-19, in order to 
track the mutations in the virus

qTo explore the genes of infected patients
o To understand why some people get more severe symptoms 

than others

o To help with the development of new treatments
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COVID-19Research with ONT

• From ONT (https://nanoporetech.com/covid-19/overview)
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Future of Genome Sequencing & Analysis

100

SmidgION from ONT

MinION from ONT
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COVID-19Research with ONT (cont’d.)

• From ONT (https://nanoporetech.com/covid-19/overview)
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Nanopore Sequencing Technology

q Nanopore sequencing is an emerging and a
promising single-molecule DNA sequencing
technology.

q First nanopore sequencing device, MinION, made
commercially available by Oxford Nanopore
Technologies (ONT) in May 2014.
o Inexpensive
o Long read length (>882Kbp)
o Produces data in real time
o Pocket-sized and portable
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Nanopore Sequencing

q Nanopore is a nano-scale hole.
q In nanopore sequencers, an ionic current passes through the

nanopores.
q When the DNA strand passes through the nanopore, the

sequencer measures the change in current.
q This change is used to identify the bases in the strand with the

help of different electrochemical structures of the different
bases.
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Step 1: Basecalling

ACTGTCGAGTCGTAGAGA…TTT

TAGTATATATTTTGGGGT…TAA

TTTGTCGAGTCGTAGAGA…TAG

105

Basecalling

Read-to-
Read Overlap 

Finding

Assembly

DNA reads

Assembled genome

Overlaps

Raw signal data Translates the raw signal output into bases to
generate DNA reads.



Damla Senol Cali

Step 2: Read-to-Read Overlap Finding

ACTGTCGAGTCGT…TTT

ACTTATATATTTTT…TTT

TTTGTCGAGTCGT…ACT
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Basecalling

Read-to-
Read Overlap 

Finding

Assembly

DNA reads

Assembled genome

Overlaps

Raw signal data Read-to-read overlap
o is a common sequence between two reads, and
o occurs when the matched regions of these reads

originate from the same part of the complete
genome.

ACTGTCGAGTCGT…TTT

ACTTATATATTTTT…TTT
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Step 3: Assembly

ACTGTCGAGTCGT…TTT

TAGTATATATTTTT…TAA

TTTGTCGAGTCGT…TAG

ACTGTCGAGTCGT…TTT

ACTTATATATTTTT…TTT

TTTGTCGAGTCGT…ACT

ACTGTCGAGTCGT…TTTTTTGTCGAGTCGT…ACTACTTATATATTTTT…TTT

107

Basecalling

Read-to-
Read Overlap 

Finding

Assembly

DNA reads

Assembled genome

Overlaps

Raw signal data Assembly algorithms,
o generate an overlap graph with the overlaps

from the previous step,
o traverse this graph, then
o construct the assembled genome.

ACTTATATATTTTT…TTTTTTGTCGAGTCGT…ACTACTGTCGAGTCGT…TTT

Which one is correct?
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Experimental Methodology
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Experimental Methodology (cont’d.)
Accuracy Metrics
q Average Identity : Percentage similarity between the assembly and 

the reference genome
q Coverage: Ratio of the #aligned bases in the reference genome to 

the length of reference genome
q Number of mismatches: Total number of single-base differences 

between the assembly and the reference genome
q Number of indels: Total number of insertions and deletions 

between the assembly and the reference genome

Performance Metrics
q Wall clock time
q Peak memory usage
q Parallel speedup
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Experimental Methodology
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Basecalling

Read-to-Read Overlap Finding

Assembly

Read Mapping

Polishing
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q Metrichor
o ONT’s cloud-based basecaller 
o Uses recurrent neural networks (RNN) for basecalling 

q Nanonet
o ONT’s offline and open-source alternative for Metrichor
o Uses RNN for basecalling 

q Scrappie
o ONT’s newest basecaller that explicitly addresses basecalling errors in 

homopolymer regions 

q Nanocall [David+, Bioinformatics 2016]
o Uses Hidden Markov Models (HMM) for basecalling

q DeepNano [Boža+, PloS One 2017]
o Uses RNN for basecalling 
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Nanopore Basecalling Tools



Damla Senol Cali

q GraphMap [Sovic +́, Nature Communications 2016]

o First partitions the entire read data set into k-length substrings (i.e., 
k-mers), and then stores them in a hash table with the positions.

o Detects the overlaps by finding the k-mer similarity between any two 
given reads, using the generated hash table. 

q Minimap [Li+, Bioinformatics 2016]

o Partitions the entire read data set into k-mers, but instead of 
creating a hash table for the full set of k-mers, finds the minimum 
representative set of k-mers, called minimizers, and creates a hash 
table with only these minimizers. 

o Finds the overlaps between two reads by finding minimizer 
similarity. 
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Read-to-Read Overlap Finding Tools
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GraphMap vs. Minimap
q GraphMap

o Finds k-mers and store them in hash table with the positions.

o Finds overlaps between two reads by k-mer similarity.
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GraphMap vs. Minimap
q Minimap

o Finds minimum representative set of k-mers, i.e. minimizers and
store them in hash table, instead of storing all k-mers.

o Finds overlaps between two reads by minimizer similarity.

114

…ACGTACGT
...

…ACGTACGT

…ACGTACGT

…ACGTACGT

…ACGTACGT

TACGTATA…

TACGTATA…

TACGTATA…

TACGTATA…

TACGTATA…
...

Read 1: Read 2:

minimizers 
for Read 1:

ACG
CGT

minimizers 
for Read 2:

TAC
ACG
CGT
ATA



Damla Senol Cali

q Canu [Koren+, Genome Research 2017]

o Performs error-correction as the initial step of its own pipeline
§ Improves the accuracy of the bases in the reads
§ Computationally-expensive

o After the error-correction step, finds overlaps between corrected 
reads and constructs a draft assembly 

q Miniasm [Li+, Bioinformatics 2016]

o Skips the error-correction step, and constructs the draft assembly 
from the uncorrected read overlaps computed in the previous step. 

o Lowers computational cost but the accuracy of the draft assembly 
depends directly on the accuracy of the uncorrected basecalled 
reads.
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q Read Mapping tools
o BWA-MEM [Li, arXiv 2013]

§ Commonly used long-read mapper

o GraphMap and Minimap (from Step 2)

q Polishing tools

o Nanopolish [Loman+, Nature Methods 2015]
§ HMM-based approach for polishing

o Racon [Vaser+, Genome Research 2017]
§ Alignment graph-based approach for polishing
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Nanopore Genome Assembly Pipeline

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing
Tools: Nanopolish, Racon

Raw signal 
data

Improved 
assembly

DNA reads

Overlaps

Draft 
assembly

Mappings of 
reads against 

draft assembly

Assembly
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Nanopore Genome Assembly Pipeline
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Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing
Tools: Nanopolish, Racon

Raw signal 
data

Improved 
assembly

DNA reads

Overlaps

Draft 
assembly

Mappings of 
reads against 

draft assembly

Assembly

Pipeline A: [Basecalling tool] 
+ Canu

Pipeline B: [Basecalling tool] 
+ GraphMap + Miniasm

Pipeline C: [Basecalling tool] 
+ Minimap + Miniasm
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Basecalling – Accuracy
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Observation 1-a: Metrichor, Nanonet and Scrappie have similar 

identity and coverage trends among all of the evaluated 
scenarios.
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Basecalling – Accuracy

120

0

50

100

150

200

250

300

350

400

450

0

10

20

30

40

50

60

70

80

90

100

PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C PL.A PL.B PL.C

# 
(K

B
p)

Pe
rc

en
ta

ge
 (%

)

Accuracy Analysis Results for Basecalling Tools

Identity (%) Coverage (%) # Mismatches # Indels

Scrappie Nanocall DeepNanoNanonetMetrichor
Observation 1-b: However, Nanocall and DeepNano cannot 

reach these three basecallers’ accuracies: they have lower identity 
and lower coverage.
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Basecalling – Accuracy
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Observation 1-c: Scrappie has the highest accuracy with the 
lowest number of mismatches and indels.
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Basecalling – Speed
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Observation 2: RNN-based basecallers, Nanonet and Scrappie 
are faster than HMM-based basecaller, Nanocall. 
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Basecalling – Speed
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Observation 3: When #threads=1, desktop is approximately 2x 
faster than big-mem because of desktop’s higher CPU frequency. 
It is an indication that all of these three tools are computationally 

expensive. 
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Basecalling – Memory
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Observation 4: Scrappie and Nanocall have a linear increase in 
memory usage when number of threads increases. In contrast, 

Nanonet has a constant memory usage for all evaluated thread 
units.
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Basecalling – Speedup
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Observation 5: When the number of threads exceeds the number 
of physical cores, the simultaneous multithreading overhead 
prevents continued linear speedup of Nanonet, Scrappie and 

Nanocall because of the CPU-intensive workload of these tools.
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Basecalling – Key Observations
Accuracy:

q ONT’s basecallers (i.e., Metrichor, Nanonet and Scrappie) have similar identity 
and coverage trends among all of the evaluated scenarios. However, other two 
basecallers (i.e., Nanocall and DeepNano) cannot reach these three basecallers’ 
accuracies: they have lower identity and lower coverage

q Scrappie has the highest accuracy with the lowest number of mismatches and 
indels

Performance:

q RNN-based basecallers are faster than HMM-based basecaller

Memory Usage:

q Scrappie and Nanocall have a linear increase in memory usage when number of 
threads increases. In contrast, Nanonet has a constant memory usage for all 
evaluated thread units

Scalability:

q Data sharing between threads degrades the parallel speedup of Nanonet when 
cores from multiple NUMA nodes take role in the computation

126



Damla Senol Cali

Basecalling – Key Observations
Accuracy:

q ONT’s basecallers (i.e., Metrichor, Nanonet and Scrappie) have similar identity 
and coverage trends among all of the evaluated scenarios. However, other two 
basecallers (i.e., Nanocall and DeepNano) cannot reach these three basecallers’ 
accuracies: they have lower identity and lower coverage

q Scrappie has the highest accuracy with the lowest number of mismatches and 
indels

Performance:

q RNN-based basecallers are faster than HMM-based basecaller

Memory Usage:

q Scrappie and Nanocall have a linear increase in memory usage when number of 
threads increases. In contrast, Nanonet has a constant memory usage for all 
evaluated thread units

Scalability:

q Data sharing between threads degrades the parallel speedup of Nanonet when 
cores from multiple NUMA nodes take role in the computation
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Basecalling – Summary
q The choice of the tool for the basecalling step plays an 

important role to overcome the high error rates of nanopore 
sequencing technology. 

q Basecalling with RNNs (e.g. Metrichor, Nanonet, Scrappie) 
provides higher accuracy and higher speed than basecalling 
with HMMs.

q The newest basecaller of ONT, Scrappie, also has the potential 
to overcome the homopolymer basecalling problem. 
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Nanopore Genome Assembly Pipeline

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing
Tools: Nanopolish, Racon

Raw signal 
data

Improved 
assembly

DNA reads

Overlaps

Draft 
assembly

Mappings of 
reads against 

draft assembly

Assembly
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Nanopore Genome Assembly Pipeline
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Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing
Tools: Nanopolish, Racon

Raw signal 
data

Improved 
assembly

DNA reads

Overlaps

Draft 
assembly

Mappings of 
reads against 

draft assembly

Assembly

Pipeline A: Metrichor +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline B: Nanonet +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline C: Scrappie +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline D: Nanocall +
[R-to-R Overlap Finding tool] + Miniasm

Pipeline E: DeepNano +
[R-to-R Overlap Finding tool] + Miniasm
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R-to-R Overlap Finding – Accuracy
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Observation 5: Pipelines with GraphMap or Minimap end up with 
similar accuracy results.
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R-to-R Overlap Finding – Performance
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Observation 6: The memory usage of both GraphMap and 
Minimap is dependent on the hash table size but independent of 

number of threads. Minimap requires 4.6x less memory than 
GraphMap, on average.
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R-to-R Overlap Finding – Performance
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Observation 7: Minimap is 2.5x faster than GraphMap, on 
average. Since in Minimap, the size of dataset that needs to be 

scanned is greatly shrunk by storing minimizers instead of k-mers, 
it performs much less computation than GraphMap. 
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R-to-R Overlap Finding – Speedup
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R-to-R Overlap Finding – Key Observations
Accuracy:

q Pipelines with GraphMap or Minimap end up with similar accuracy results.

Memory Usage:

q The memory usage of both GraphMap and Minimap is dependent on the 
hash table size but independent of number of threads. Minimap requires 
4.6x less memory than GraphMap, on average.

Performance:

q Minimap is 2.5x faster than GraphMap, on average.
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R-to-R Overlap Finding – Summary
q Storing minimizers instead of all k-mers, as done by Minimap, 

does not affect the overall accuracy of the first three steps of 
the pipeline. 

q By storing minimizers, Minimap has a much lower memory 
usage and thus much higher performance than GraphMap.

136



Damla Senol Cali

Nanopore Genome Assembly Pipeline

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing
Tools: Nanopolish, Racon

Raw signal 
data

Improved 
assembly

DNA reads

Overlaps

Draft 
assembly

Mappings of 
reads against 

draft assembly

Assembly

137



Damla Senol Cali

Assembly – Accuracy & Performance
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Observation 8: Canu provides higher accuracy than Miniasm, 
with the help of the error-correction step that is present in its own 

pipeline. On average, Canu provides 96.1% identity whereas 
Miniasm provides 84.4% identity.

Observation 9: Canu is much more computationally intensive 
and greatly (i.e., by 1096.3x) slower than Miniasm, because of its 

very expensive error-correction step.
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Assembly – Summary
q There is a trade-off between accuracy and performance when 

deciding on the appropriate tool for the assembly step. 

q Canu produces highly accurate assemblies, but it is resource 
intensive and slow. In contrast, Miniasm is a fast assembler, 
but it cannot produce as accurate draft assemblies as Canu. 

q Miniasm can potentially be used for fast initial analysis and 
then further polishing can be applied in the next step to 
produce higher-quality assemblies.
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Nanopore Genome Assembly Pipeline

Basecalling
Tools: Metrichor, Nanonet, Scrappie, Nanocall, DeepNano

Read-to-Read Overlap Finding
Tools: GraphMap, Minimap

Assembly
Tools: Canu, Miniasm

Read Mapping (optional)
Tools: BWA-MEM, Minimap, (GraphMap)

Polishing (optional)
Tools: Nanopolish, Racon

Raw signal 
data

Improved 
assembly

DNA reads

Overlaps

Draft 
assembly

Mappings of 
reads against 

draft assembly

Assembly
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Read Mapping & Polishing – Accuracy
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Observation 11: Both Nanopolish and Racon significantly 
increase the accuracy of the draft assemblies.

For example, Nanopolish increases the identity and coverage of the draft 
assembly generated with the Metrichor+Minimap+Miniasm pipeline from 

87.71% and 94.85%, respectively, to 92.33% and 96.31%. 
Similarly, Racon increases them to 97.70% and 99.91%, respectively.

Observation 12: For Racon, the choice of read mapper does not 
affect the accuracy of the polishing step.
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Read Mapping & Polishing – Speed
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Observation 13: Nanopolish is computationally much more 
intensive and thus greatly slower than Racon.

Nanopolish runs take days to complete whereas Racon runs take minutes. 
This is mainly because Nanopolish works on each base individually, whereas 
Racon works on the windows. Since each window is much longer (i.e., 20kb) 
than a single base, the computational workload is greatly smaller in Racon. 

Observation 14: BWA-MEM is computationally more expensive 
than Minimap.

Although the choice of BWA-MEM and Minimap for the read mapping step 
does not affect the accuracy of the polishing step, these two tools have a 

significant difference in performance.
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Read Mapping & Polishing – Summary
q Further polishing can significantly increase the accuracy of the 

assemblies. 

q Pipelines with Minimap and Racon can provide a significant 
speedup compared with the pipelines with BWA-MEM and 
Nanopolish, while resulting with high-quality consensus 
sequences.
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Nanopore Sequencing & Tools [BiB 2018]
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Damla Senol Cali, Jeremie S. Kim, Saugata Ghose, Can Alkan, and Onur Mutlu, 
"Nanopore Sequencing Technology and Tools for Genome Assembly: 
Computational Analysis of the Current State, Bottlenecks and Future 
Directions."
Briefings in Bioinformatics, April 2018.
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candidate 
alignment locations 

(CAL)
4%

Read Alignment
93%

SAM 
printing
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What Makes Read Mapper Slow? 

93%
of the read mapper’s 

execution time is spent in 

read alignment.

Alser et al, Bioinformatics (2017)



What Makes Read Mapper Slow? (cont’d.)
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N E T H E R L A N D S

0 1 2 3 4 5 6 7 8 9 10 11

S 1 1 2 3 4 5 6 7 8 9 10 10

W 2 2 2 3 4 5 6 7 8 9 10 11

I 3 3 3 3 4 5 6 7 8 9 10 11

T 4 4 4 3 4 5 6 7 8 9 10 11

Z 5 5 5 4 4 5 6 7 8 9 10 11

E 6 6 5 5 5 4 5 6 7 8 9 10

R 7 7 6 6 6 5 4 5 6 7 8 9

L 8 8 7 7 7 6 5 4 5 6 7 8

A 9 9 8 8 8 7 6 5 4 5 6 7

N 10 9 9 9 9 8 7 6 5 4 5 6

D 11 10 10 10 10 9 8 7 6 5 4 5

What Makes Read Mapper Slow? (cont’d.)

q Quadratic-time dynamic-programming 
algorithm

n Data dependencies limit the 
computation parallelism

n Entire matrix is computed even 
though strings can be 
dissimilar.

Enumerating all possible prefixes

Processing row (or column) after another

Number of differences is computed only at the backtraking step.
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Approximate String Matching (ASM)
Approximate string matching algorithms:

q Smith-Waterman (SW) algorithm [Smith+, Advances in Applied Mathematics 1981]
o Dynamic programming (DP) algorithm, with quadratic time and space 

complexity
o Common algorithm used by read mappers

q Myers’ bitvector algorithm [Myers, Journal of the ACM 1999]
o Transformed version of SW algorithm into bitvectors and bitwise operations

q Bitap algorithm [Baeza-Yates+, Communications of the ACM 1992]
o [Wu+, Communications of the ACM 1992] extended Bitap to perform 

approximate string matching
o Bitvectors and bitwise operations

We have focused on the Bitap algorithm.
à Reason: Bitap algorithm can perform ASM with fast and simple bitwise operations,
which makes it amenable to efficient hardware acceleration.
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CPU Systems

Plenty of cache per core

Low latency, low throughput processors

Less compute, more cache
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Evaluation Methodology (CPU-bitap)

Ø Vtune analysis on a real system
q System Configuration: 

o Intel Core i5-6600K CPU 
@ 3.50GHz (Skylake)

o Single socket, 4 physical 
cores, 1 thread per core

o 32KB L1 private caches, 
256KB L2 private caches, 6MB 
shared LLC

o 32GB main memory
q Analysis Details:

o HPC performance 
characterization

o Hardware events for MPKIs 
and cache hit/miss rates of 
each level of cache

o Hotspot analysis

Ø Gem5 + Ramulator Simulations
q Gem5 Configuration:

o CPU type: O3 (detailed)
o Number of cores= Number of threads = 1, 

2, 4, 8, 16, 32, 64
o Private L1 size = 64KB each
o Private L2 size = 512KB each
o Shared L3 size = # cores * 1MB
o Main memory type = LPDDR4 vs. HBM
o Main memory size = 16GB

q Analysis Details:
o Execution-driven simulation 
o Scalability, memory-intensity (cache 

usage, memory bandwidth, and memory 
latency) and possible bottlenecks analysis
§ With and without L2/L3 caches
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Results (CPU-bitap)
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Results (CPU-bitap)
Ø CPU-bitap is very compute-intensive and not memory-bound. 

Ø Lots of computation for one byte of data movement

q L1-MPKI: 0.196, L2-MPKI: 0.086, LLC-MPKI: 0.037, and 

q Very high L1-hit rate (99.895%)

Ø Adding more cores provides a linear speedup

Ø Since the working set fits within the registers and the L1 cache and the 
number of memory requests is very low:

q No performance difference without L2 and L3 caches 

q No performance difference between LPDDR4 or HBM as the memory
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GPU Systems

Less cache per core

High latency, high throughput processors

More compute, less cache
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Evaluation Methodology (GPU-bitap)

Ø nvprof analysis on a real system
q System Configuration: 

o Nvidia Titan V GPU (Volta)
o 80 multiprocessors * 64 CUDA cores per MP = 5120 CUDA cores
o L2 cache size = 4.5MB
o Warp size = 32

o 12GB HBM2 memory
q Analysis Details:

o Events:

§ Elapsed and active cycles
o Metrics:
§ Branch and warp execution efficiency
§ L2 read/write transactions and throughput

§ DRAM read/write transactions and throughput
§ Stalls (i.e., instruction fetch, execution dependency, memory dependency, 

and busy compute pipeline)
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Results (GPU-bitap)

Compute-bound Shared cache-bound
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Results (GPU-bitap)
Ø From 1 thread per block to 32 threads per block, 

q GPU-bitap is compute-bound, and

q Warp execution efficiency increases from 3% to 100%, linearly.

Ø GPU-bitap is shared cache-bound (i.e., on-GPU L2 cache-bound) after 
number of threads per block reaches 32. 

q Small number of registers à not enough to hold the frequently used 
data

q Number of L2 read transactions stops decreasing and becomes stable

Ø Bottlenecks: 

q Shared memory and L2 cache accesses

q Destructive interference of threads
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Example for the Bitap Algorithm
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PREPROCESSING
Pattern Bitmasks:       

CTGA
PM(A) = 1110
PM(C) = 0111
PM(G) = 1101
PM(T) = 1011

State Vectors:

R0 = 1111  
R1 = 1111

Text[4]: CGTGA
oldR0 = 1111
oldR1 = 1111

R0 = (oldR0 << 1) | PM(A) 
= 1110

R1 =

= D & S & I & M = 1100

0 1

D : oldR0                = 1111  
S : oldR0 << 1           = 1110
I : R0 << 1              = 1100
M : (oldR1 << 1) | PM(A) = 1110 

Text[3]: CGTGA
oldR0 = 1110
oldR1 = 1100

R0 = (oldR0 << 1) | PM(G) 
= 1101

R1 =

= D & S & I & M = 1000

2

D : oldR0                = 1110  
S : oldR0 << 1           = 1100
I : R0 << 1              = 1010
M : (oldR1 << 1) | PM(G) = 1101 

Text[2]: CGTGA
oldR0 = 1101
oldR1 = 1000

R0 = (oldR0 << 1) | PM(T) 
= 1011

R1 =

= D & S & I & M = 0000

3

D : oldR0                = 1101  
S : oldR0 << 1           = 1010
I : R0 << 1              = 0110
M : (oldR1 << 1) | PM(T) = 1011 

Alignment Found @ Location=2

Text[1]: CGTGA
oldR0 = 1011
oldR1 = 0000

R0 = (oldR0 << 1) | PM(G) 
= 1111

R1 =

= D & S & I & M = 0000

4

D : oldR0                = 1011  
S : oldR0 << 1           = 0110
I : R0 << 1              = 1110
M : (oldR1 << 1) | PM(G) = 1101 

Alignment Found @ Location=1

Text[0]: CGTGA
oldR0 = 1111
oldR1 = 0000

R0 = (oldR0 << 1) | PM(C) 
= 1111

R1 =

= D & S & I & M = 0110

5

D : oldR0                = 1111  
S : oldR0 << 1           = 1110
I : R0 << 1              = 1110
M : (oldR1 << 1) | PM(C) = 0111 

Alignment Found @ Location=0

Text Region:
CGTGA

Query Pattern:
CTGA

Edit Distance 
Threshold (k): 

1
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GenASM Algorithm
q GenASM-DC Algorithm: 

o Modified Bitap for Distance Calculation
o Extended for efficient long read support
o Besides bit-parallelism that Bitap has, extended for parallelism:

§ Loop unrolling
§ Text-level parallelism

q GenASM-TB Algorithm: 
o Novel Bitap-compatible TraceBack algorithm
o Walks through the intermediate bitvectors (match, deletion, 

substitution, insertion) generated by GenASM-DC 
o Follows a divide-and-conquer approach to decrease the    

memory footprint
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Loop Unrolling in GenASM-DC
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Cycle#
Thread1

R0/4
Thread2

R1/5
Thread3

R2/6
Thread4

R3/7

#1 T0-R0 − − −
#2 T1-R0 T0-R1 − −
#3 T2-R0 T1-R1 T0-R2 −
#4 T3-R0 T2-R1 T1-R2 T0-R3
#5 T0-R4 T3-R1 T2-R2 T1-R3
#6 T1-R4 T0-R5 T3-R2 T2-R3
#7 T2-R4 T1-R5 T0-R6 T3-R3
#8 T3-R4 T2-R5 T1-R6 T0-R7
#9 − T3-R5 T2-R6 T1-R7

#10 − − T3-R6 T2-R7
#11 − − − T3-R7

target cell (Rd)
cells target cell depends on (oldRd, Rd-1, oldRd-1) 

data written to memory
data read from memory

Cycle#
Thread1

R0/1/2/..

#1 T0-R0
… …

#8 T0-R7
#9 T1-R0
… …

#16 T1-R7
#17 T2-R0
… …

#24 T2-R7
#25 T3-R0

… …
#32 T3-R7
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Traceback Example with GenASM-TB
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Deletion Example (Text Location=0)

Text[0]: C Text[1]: G Text[2]: T Text[3]: G    Text[4]: A

Match(C)       Del(–)        Match(T)      Match(G) Match(A)
<3,0,1>       <2,1,1> <2,2,0>       <1,3,0> <0,4,0>

R0- : ....
R1-M : 0111

R0- : ....
R1-D : 1011

R0-M : 1011
R1- : ....

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Substitution Example (Text Location=1)

Text[1]: G Text[2]: T Text[3]: G    Text[4]: A

Subs(C)       Match(T)      Match(G)       Match(A)
<3,1,1>       <2,2,0> <1,3,0>       <0,4,0>

R0- : ....
R1-S : 0110

R0-M : 1011
R1- : .... 

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....

Insertion Example (Text Location=2)

Text[–]    Text[2]: T Text[3]: G    Text[4]: A

Ins(C)       Match(T)      Match(G)       Match(A)
<3,2,1>       <2,2,0> <1,3,0>       <0,4,0>

R0- : ....
R1-I : 0110

R0-M : 1011
R1- : .... 

R0-M : 1101
R1- : ....

R0-M : 1110
R1- : ....
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GenASM [MICRO 2020]
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Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, 
Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, 
Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, 
Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching 
Acceleration Framework for Genome Sequence Analysis”
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), 
Virtual, October 2020.

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/


Backup Slides
(BitMAc)



Damla Senol Cali

Intel Stratix 10 MX

169

PC0 PC1 PC6 PC7PC2 PC3 PC8 PC9 PC14 PC15PC10 PC11 PC12 PC13PC4 PC5

eSRAM

eSRAM HBM2 IP (Top)

HBM2 IP (Bottom)

Core 
Logic 
Fabric

M20K
Embedded

Memory
Blocks

M20K
Embedded

Memory
Blocks

Core 
Logic 
Fabric

M20K
Embedded

Memory
Blocks

HBM2 (Top)

PC0 PC1 PC6 PC7PC2 PC3 PC8 PC9 PC14 PC15PC10 PC11 PC12 PC13PC4 PC5

HBM2 (Bottom)
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BitMAc Design
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HBM2 Pseudo-channel

text buffer pattern buffer CIGAR buffer

PMs buffer

PM Generator

DC Logic (16 Processing Elements)

M20Ks (as TB-SRAMs)

TB Logic

wr_address
counter

textConsumed

patConsumed

curError

curPattern

curText

Done?

…

rdText

text

rdPat

pattern bitmasks

minError

wrCIGAR

rdAddrwrAddr

CIGAR 
output

intermediate 
bitvectors

done
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BitMAc – Results
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1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

PacBio - 10% PacBio - 15% ONT - 10% ONT - 15% Average

Th
ro

ug
hp

ut
 (r
ea

ds
/s
ec

)

BWA-MEM (t=12) BitMAc (w/ pairs from BWA-MEM) Minimap2 (t=12) BitMAc (w/ pairs from Minimap2)

761 !

136 !

1E+00

1E+01

1E+02
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1E+04

1E+05

1E+06

1E+07

1E+08

Illumina-100bp Illumina-150bp Illumina-250bp Average
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 (r
ea
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/s
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)

BWA-MEM (t=12) BitMAc (w/ pairs from BWA-MEM) Minimap2 (t=12) BitMAc (w/ pairs from Minimap2)

92 !
130 !
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BitMAc – Results

172

Component Dynamic On-Chip 
Power Dissipation 

Total On-Chip 
Power Dissipation 

DC Logic (16 PEs) 128.57 mW

TB Logic 10.24 mW

FSM Logic 3.15 mW

M20Ks 211.61 mW

Other 15.72 mW

Total − 1 BitMAc Accelerator 369.29 mW (0.4 W) 6043.24 mW (6.0 W)

Total − 32 BitMAc Accelerators
(1 per each pseudo-channel) 11569.92 mW (11.6 W) 17234.67 mW (17.2 W)

Total − 128 BitMAc Accelerators
(4 per each pseudo-channel) 43042.90 mW (43 W) 48935.65 mW (48.9 W)
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BitMAc – Results
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Configuration Logic Utilization M20K eSRAM DSP

1 BitMAc Accelerator 0.5% 0.7% 0% 0%

32 BitMAc Accelerators
(1 per each pseudo-channel) 17.7% 22.4% 0% 0%

128 BitMAc Accelerators
(4 per each pseudo-channel) 64.3% 89.7% 0% 0%
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SeGraM – Graph Structure
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Nodes table

.

.

.

seq. #out
length                        edges

Characters 
table

Edges table

.

.

.

2-bit
char

.

.

.

4B edge info
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SeGraM – Index Structure
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First-level: Buckets

.

.

.

Second-level: Minimizers Third-level: Locations

#minimizers

.

.

.

hash value              #locations

.

.

.

node ID                       offset
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Minimizers

177

Position 1 2 3 4 5 6 7

Sequence A G T A G C A

Full set of  
k-mers
with
minimizer
in red

A G T

G T A

T A G

A G C

G C A
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BitAlign Algorithm
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SeGraM – Hops 
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Recall: GenASM-DC’s HW Design
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BitAlign – Hop Length Dist Plots
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Hop Length Dist Plots (cont’d.)
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DP-based Graph Alignment

From PaSGAL paper
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https://ieeexplore.ieee.org/abstract/document/8821047
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DP-based Graph Alignment (cont’d.)

From abPOA paper

“abPOA processes all the vectors in a row-by-row manner following the partial 
order of the graph. During the DP process, for “match” and “delete” 
operations (diagonal and vertical moves in the DP matrix), all scores stored in 
each SIMD vector can be updated in parallel as they only rely on scores in the 
predecessor rows. For “insert” operations (horizontal moves in the DP matrix), 
sequential non-parallel updating of scores in the same SIMD vector is needed, 
as the score of each cell depends on the score of the cell on the left.”
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https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btaa963/5962085?redirectedFrom=fulltext
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“A region of a yeast genome variation graph” 
from vg paper [Garrison et al., Nature Biotechnology, 2018]
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https://www.nature.com/articles/nbt.4227

