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Genome Sequencing
q Genome sequencing: Enables us to determine the order of the DNA 

sequence in an organism’s genome

o Plays a pivotal role in:
§ Personalized medicine
§ Outbreak tracing
§ Understanding of evolution

q Challenges:
o There is no sequencing machine that takes long DNA as an input, 

and gives the complete sequence as output
o Sequencing machines extract small randomized fragments of the 

original DNA sequence
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Genome Sequencing (cont’d.)
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Sample Collection

Preparation

Sequencing

Genome Sequence 
Analysis

Large DNA 
molecule

Chopped DNA 
fragments

Sequenced 
reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT

ACGACGTAGCT

AAAAAAAAAA

ACGAGCGGGT
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Sequencing Technologies
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Short reads: a few hundred base pairs and error rate of ∼0.1%
Long reads: thousands to millions of base pairs and error rate of 5–10%

Oxford Nanopore 
(ONT)

PacBio Illumina
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Current State of Sequencing

5



Damla Senol Cali

Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)
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https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)
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Computation is a bottleneck!

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data
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Future of Genome Sequencing & Analysis
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SmidgION from ONT

MinION from ONT
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Problem Statement

Rapid genome sequence analysis is currently 
bottlenecked by the computational power 

and memory bandwidth limitations of 
existing systems, as many of the steps 

in genome sequence analysis must process 
a large amount of data
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Our Goal & Approach
q Our Goal: 

Accelerating genome sequence analysis by efficient 
hardware/algorithm co-design

q Our Approach:
(1) Analyze the multiple steps and the associated tools in 

the genome sequence analysis pipeline,
(2) Expose the tradeoffs between accuracy, performance, 

memory usage and scalability, and 
(3) Co-design fast and efficient algorithms along with 

scalable and energy-efficient customized hardware 
accelerators for the key bottleneck steps of the pipeline
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Outline

11

Bottleneck analysis of long read assembly
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework 
for genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing]

GenGraph: Hardware acceleration framework 
for sequence-to-graph mapping 

[Ongoing]
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Outline
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Bottleneck analysis of long read assembly
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework 
for genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing]

GenGraph: Hardware acceleration framework 
for sequence-to-graph mapping 

[Ongoing]
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Read Mapping, method of aligning the 
reads against the reference genome in 

order to detect matches and variations.

ACGTACCCCGT
GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of 
merging the reads in order to construct

the original sequence.

Reference
Genome

Original
Sequence

Genome Sequence Analysis
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Reads Mapped Reads Reads Assembled Reads



Damla Senol Cali

Genome Assembly Pipeline Using Long Reads

Basecalling
(Translates signal data into bases: A,C,G,T)

Read-to-Read Overlap Finding
(Finds pairwise read alignments for each pair of read)

Assembly
(Traverses the overlap graph & constructs the draft assembly)

Read Mapping
(Maps the reads to the draft assembly)

Raw signal 
data

Assembly

DNA reads

Overlaps

Draft assembly

Improved 
assembly

Polishing
(Polishes the draft assembly & increases the accuracy)

Mappings of 
reads against 
draft assembly

q With the emergence of long read sequencing technologies, de novo assembly 
becomes a promising way of constructing the original genome. 
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Our Contributions

q Analyze the tools in multiple dimensions: accuracy, 
performance, memory usage, and scalability

q Reveal new bottlenecks and trade-offs

q First study on bottleneck analysis of nanopore sequence 
analysis pipeline on real machines

q Provide guidelines for practitioners

q Provide guidelines for tool developers
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Experimental Methodology
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Experimental Methodology (cont’d.)
Accuracy Metrics
q Average Identity : Percentage similarity between the assembly and 

the reference genome
q Coverage: Ratio of the #aligned bases in the reference genome to 

the length of reference genome
q Number of mismatches: Total number of single-base differences 

between the assembly and the reference genome
q Number of indels: Total number of insertions and deletions 

between the assembly and the reference genome

Performance Metrics
q Wall clock time
q Peak memory usage
q Parallel speedup
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Using /usr/bin/time & perf
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Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that increase the memory requirements
o Algorithms that are not cache-efficient
o Not keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage
o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads

18
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Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints,
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that increase the memory requirements
o Algorithms that are not cache-efficient
o Not keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage
o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads
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Goal 1:
High-performance and low-power
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Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints,
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that can minimize the memory requirements
o Cache-efficient algorithms
o Keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage
o Not dividing the input data into batches
o Not limiting the memory usage of each thread
o Dividing the dataset instead of the computation between simultaneous threads
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Goal 1:
High-performance and low-power

Goal 2:
Memory-efficient
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Key Findings
q Laptops are becoming a popular platform for running genome assembly

tools, as the portability of a laptop makes it a good fit for in-field analysis
o Greater memory constraints,
o Lower computational power
o Limited battery life

q Memory usage is an important factor that greatly affects the performance
and the usability of the tool
o Data structure choices that can minimize the memory requirements
o Cache-efficient algorithms
o Keeping memory usage in check with the number of threads

q Scalability of the tool with the number of cores is an important requirement.
However, parallelizing the tool can increase the memory usage.
o Dividing the input data into batches
o Limiting the memory usage of each thread
o Dividing the computation instead of the dataset between simultaneous threads
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Goal 1:
High-performance and low-power

Goal 2:
Memory-efficient

Goal 3:
Scalable/highly-parallel
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Outline
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Bottleneck analysis of long read assembly
[Briefings in Bioinformatics, 2018] 

GenASM: Approximate string matching framework 
for genome sequence analysis

[MICRO 2020] 

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing]

GenGraph: Hardware acceleration framework 
for sequence-to-graph mapping 

[Ongoing]
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Read Mapping, method of aligning the 
reads against the reference genome in 

order to detect matches and variations.

ACGTACCCCGT
GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of 
merging the reads in order to construct

the original sequence.

Recall: Genome Sequence Analysis

23



Damla Senol Cali

Read Mapping Pipeline
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Indexing
(Pre-processing step to generate index of reference)

Seeding
(Query the index)

Pre-Alignment Filtering
(Filter out dissimilar sequences)

Read Alignment
(Perform distance/score calculation & traceback)

Reference
genome

Hash-table 
based index

Potential mapping 
locations

Optimal 
alignment

Remaining 
potential mapping 
locations

Reads

Reference
segment

Query read
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GSA with Read Mapping
q Read mapping: First key step in genome sequence analysis (GSA)

o Aligns reads to one or more possible locations within          
the reference genome, and

o Finds the matches and differences between the read and 
the reference genome segment at that location 

q Multiple steps of read mapping require approximate string matching

o Approximate string matching (ASM) enables read mapping to 
account for sequencing errors and genetic variations in the reads

q Bottlenecked by the computational power and memory bandwidth 
limitations of existing systems

25
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GenASM: ASM Framework for GSA

q GenASM: First ASM acceleration framework for GSA
o Based upon the Bitap algorithm 

§ Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm
§ Highly-parallel Bitap with long read support
§ Novel bitvector-based algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms 
with low-power and area-efficient hardware accelerators

Our Goal:
Accelerate approximate string matching 

by designing a fast and flexible framework, 
which can accelerate multiple steps of genome sequence analysis

26
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q Sequenced genome may not exactly map to the reference genome due 
to genetic variations and sequencing errors

q Approximate string matching (ASM):
o Detect the differences and similarities between two sequences
o In genomics, ASM is required to:

§ Find the minimum edit distance (i.e., total number of differences)
§ Find the optimal alignment with a traceback step

◦ Sequence of matches, substitutions, insertions and deletions,       
along with their positions

o Usually implemented as a dynamic programming (DP) based algorithm

Approximate String Matching

27

Reference:
Read:

insertionsubstitutiondeletion

A A A AT G T T TA G T G C TA C T G
A A AT G T T TA C T G C TA C T T G
A A A AT G T T TA G T G C TA C T G
A A A AT G T T TA C T G C TA C T T G
A A A AT G T T TA G T G C TA C T G
A A A AT G T T TA G T G C TA C T T G
A A A AT G T T TA G T G C TA C T T G
A A A AT G T T TA G T G C TA C T T GC

A
T

G
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DP-based ASM

28

Commonly-used 
algorithm for ASM 

in genomics…

...with quadratic 
time and space 

complexity
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Bitap Algorithm
q Bitap1,2 performs ASM with fast and simple bitwise operations

o Amenable to efficient hardware acceleration
o Computes the minimum edit distance between a text (e.g., reference 

genome) and a pattern (e.g., read) with a maximum of k errors 

q Step 1: Pre-processing (per pattern)
o Generate a pattern bitmask (PM) for each character in the alphabet  

(A, C, G, T)
o Each PM indicates if character exists at each position of the pattern

q Step 2: Searching (Edit Distance Calculation)
o Compare all characters of the text with the pattern by using:

§ Pattern bitmasks 
§ Status bitvectors that hold the partial matches 
§ Bitwise operations

[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.
[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.
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Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take 

place sequentially

30



Damla Senol Cali

Bitap Algorithm (cont’d.)

Large number of 
iterations

q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1
insertion         = R[d-1] << 1
match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.

31
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Bitap Algorithm (cont’d.)

Data dependency 
between iterations 

(i.e., no 
parallelization)

q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1
insertion         = R[d-1] << 1
match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.

32
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Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take 

place sequentially

2) No Support for Traceback:
o Bitap does not include any support for optimal alignment identification

33
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Bitap Algorithm (cont’d.)
q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion          = oldR[d-1]

substitution  = oldR[d-1] << 1
insertion         = R[d-1] << 1
match              = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match. 

If 0, match with d many errors.

34

Does not store and process 
these intermediate bitvectors 
to find the optimal alignment 

(i.e., no traceback)
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Hardware

Algorithm

Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take 

place sequentially

2) No Support for Traceback:
o Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:
o Each bitvector has a length equal to the length of the pattern
o Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:
o Text-level parallelism
o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:
o High memory bandwidth required to read and write the computed 

bitvectors to memory

35
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SW

HW

GenASM: ASM Framework for GSA
q Approximate string matching (ASM) acceleration framework based 

on the Bitap algorithm

q First ASM acceleration framework for genome sequence analysis

q We overcome the five limitations that hinder Bitap’s use in genome 
sequence analysis:

o Modified and extended ASM algorithm

§ Highly-parallel Bitap with long read support

§ Novel bitvector-based algorithm to perform traceback

o Specialized, low-power and area-efficient hardware for              
both modified Bitap and novel traceback algorithms

36
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GenASM-DC GenASM-TB

GenASM Hardware Design

37

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.



Damla Senol Cali

GenASM Hardware Design

38

GenASM-DC GenASM-TB

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.

reference 
& query 

locations

Write 
bitvectors

reference 
text 

& query 
pattern

sub-text & 
sub-pattern

Read 
bitvectors

Generate 
bitvectors

2

1

3

4

5 6

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Read 
bitvectors

6
Write 

bitvectors

5

Generate 
bitvectors 4

sub-text & 
sub-pattern3

reference 
text 

& query 
pattern

2

reference 
& query 

locations

1

Find the 
traceback output

7
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GenASM Hardware Design
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GenASM-DC GenASM-TB

Host 
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main 
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.

reference 
& query 

locations

Write 
bitvectors

reference 
text 

& query 
pattern

sub-text & 
sub-pattern

Read 
bitvectors

Find the 
traceback output

Generate 
bitvectors

2

1

3

4

5 6

7

GenASM-DC:
generates bitvectors 

and performs edit 
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the 
optimal alignment 

Our specialized compute units and on-chip SRAMs help us to: 
à Match the rate of computation with memory capacity and bandwidth 

à Achieve high performance and power efficiency
à Scale linearly in performance with                                                                     

the number of parallel compute units that we add to the system
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GenASM-DC: Hardware Design
q Linear cyclic systolic array-based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint

40

Processing Block (PB)

Processing Core (PC)

OldR[d-1] <<

<<

<<

R[d-1]

OldR[d]

PatternMask Match

R[d]

Substitution

Insertion

Deletion

OldR
out

PM 
out

PM
out

OldR in

PM in
PC

PE1

PC

PE2

PC

PEp-1

PC

PEp

OldR
out

PC

PE

DC-SRAM

TB-SRAMp-1

Intermediate Bitvectors

TB-SRAMpTB-SRAM2TB-SRAM1
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Bitwise 
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192 insertion

deletion

subs

64

64

64

64

1

2

Next Rd 
Addr

Compute

3

GenASM-TB

GenASM-TB: Hardware Design

q Very simple logic: 
❶Reads the bitvectors from one of the TB-SRAMs using the computed 
address 
❷Performs the required bitwise comparisons to find the traceback output 
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors

41

Bitwise 
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192 insertion

deletion

subs

64

64

64

64

to main 
memory

1

2

Next Rd 
Addr

Compute

3

1.5KB
TB-SRAM1

1.5KB
TB-SRAM2

1.5KB
TB-SRAM64

1

2

3
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Use Cases of GenASM
(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 
reference regions

(2) Pre-Alignment Filtering for Short Reads
o Quickly identify and filter out the unlikely candidate reference 

regions for each read

(3) Edit Distance Calculation
o Measure the similarity or distance between two sequences

q We also discuss other possible use cases of GenASM in our paper:
o Read-to-read overlap finding, hash-table based indexing, whole 

genome alignment, generic text search

42
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Evaluation Methodology
q We evaluate GenASM using:
o Synthesized SystemVerilog models of the GenASM-DC and 

GenASM-TB accelerator datapaths 
o Detailed simulation-based performance modeling

q 16GB HMC-like 3D-stacked DRAM architecture
o 32 vaults 
o 256GB/s of internal bandwidth, clock frequency of 1.25GHz
o In order to achieve high parallelism and low power-consumption
o Within each vault, the logic layer contains a GenASM-DC 

accelerator, its associated DC-SRAM, a GenASM-TB accelerator, 
and TB-SRAMs.

43
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Evaluation Methodology (cont’d.)

44

SW Baselines HW Baselines

Read Alignment Minimap21
BWA-MEM2

GACT (Darwin)3
SillaX (GenAx)4

Pre-Alignment Filtering – Shouji5

Edit Distance Calculation Edlib6 ASAP7

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.
[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.
[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.

[7] S.S. Banerjee et al. ”ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.
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Evaluation Methodology (cont’d.)
q For Use Case 1: Read Alignment, we compare GenASM with:

o Minimap2 and BWA-MEM (state-of-the-art SW)
§ Running on Intel® Xeon® Gold 6126 CPU (12-core) operating 

@2.60GHz with 64GB DDR4 memory
§ Using two simulated datasets:

◦ Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate
◦ Short Illumina reads: 100-250bp reads, 5% error rate

o GACT of Darwin and SillaX of GenAx (state-of-the-art HW)
§ Open-source RTL for GACT
§ Data reported by the original work for SillaX
§ GACT is best for long reads, SillaX is best for short reads

45
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Evaluation Methodology (cont’d.)
q For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

o Shouji (state-of-the-art HW – FPGA-based filter)
§ Using two datasets provided as test cases:
• 100bp reference-read pairs with an edit distance threshold of 5
• 250bp reference-read pairs with an edit distance threshold of 15

q For Use Case 3: Edit Distance Calculation, we compare GenASM with:

o Edlib (state-of-the-art SW)
§ Using two 100Kbp and 1Mbp sequences with similarity ranging 

between 60%-99%

o ASAP (state-of-the-art HW – FPGA-based accelerator)
§ Using data reported by the original work

46
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Key Results – Area and Power
q Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

Total (1 vault): 0.334 mm2 0.101 W
Total (32 vaults): 10.69 mm2 3.23 W

% of a Xeon CPU core: 1% 1%

47
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0.256

Area (mm2)

0.033
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0.009
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Power (W)
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Power (W)

GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)
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0.055

Power (W)

GenASM-DC (64 PEs)
GenASM-TB
DC-SRAM (8 KB)
TB-SRAMs (64 x 1.5 KB)
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Key Results – Area and Power
q Based on our synthesis of GenASM-DC and GenASM-TB accelerator 

datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz
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0.049 0.016

0.013

0.256

Area (mm2)

0.033

0.004
0.009

0.055

Power (W)

0.033

0.004
0.009

0.055
Power (W)

GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)

0.033

0.004
0.009

0.055

Power (W)

GenASM-DC (64 PEs)
GenASM-TB
DC-SRAM (8 KB)
TB-SRAMs (64 x 1.5 KB)

GenASM has low area and power overheads
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Key Results – Use Case 1
(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate 
reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences

49
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Key Results – Use Case 1 (Long Reads)
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1E+00

1E+01

1E+02

1E+03

1E+04
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1E+06
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ut
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/s
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)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

GenASM achieves 648× and 116× speedup over 
12-thread runs of BWA-MEM and Minimap2, 

while reducing power consumption by 34× and 37×

648×
116×

SW
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Key Results – Use Case 1 (Long Reads)
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GenASM provides 3.9× better throughput, 
6.6× the throughput per unit area, and 
10.5× the throughput per unit power, 

compared to GACT of Darwin

3.9×
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Key Results – Use Case 1 (Short Reads)
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GenASM achieves 111× and 158× speedup over 
12-thread runs of BWA-MEM and Minimap2, 

while reducing power consumption by 33× and 31×

111× 158×

GenASM provides 1.9× better throughput and 
uses 63% less logic area and 82% less logic power, 

compared to SillaX of GenAx

HW

SW
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Key Results – Use Case 2
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(1) Read Alignment Step of Read Mapping
o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences
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Key Results – Use Case 2
q Compared to Shouji:

o 3.7× speedup

o 1.7× less power consumption

o False accept rate of 0.02% for GenASM vs. 4% for Shouji

o False reject rate of 0% for both GenASM and Shouji

54

GenASM is more efficient in terms of 
both speed and power consumption, 

while significantly improving the accuracy 
of pre-alignment filtering

HW
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Key Results – Use Case 3
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(1) Read Alignment Step of Read Mapping
o Find the optimal alignment of how reads map to candidate 

reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate 

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences



Damla Senol Cali

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

99% 97% 94% 90% 80% 70% 60%

E
xe

cu
ti

on
 t

im
e
(µ
s)

Similarity between two sequences

Edlib (100 Kbp) GenASM (100 Kbp) Edlib (1 Mbp) GenASM (1 Mbp)

Key Results – Use Case 3
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GenASM provides 146 – 1458× and 627 – 12501× speedup, 
while reducing power consumption by 548× and 582×

for 100Kbp and 1Mbp sequences, respectively, compared to Edlib

GenASM provides 9.3 – 400× speedup over ASAP, 
while consuming 67× less power

146× 1458×
627×

12501×

HW

SW
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Additional Details in the Paper
q Details of the GenASM-DC and GenASM-TB algorithms

q Big-O analysis of the algorithms

q Detailed explanation of evaluated use cases

q Evaluation methodology details                                             
(datasets, baselines, performance model)

q Additional results for the three evaluated use cases

q Sources of improvements in GenASM                             
(algorithm-level, hardware-level, technology-level)

q Discussion of four other potential use cases of GenASM 
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Summary of GenASM
q Problem: 

o Genome sequence analysis is bottlenecked by the computational power and
memory bandwidth limitations of existing systems

o This bottleneck is particularly an issue for approximate string matching

q Key Contributions: 
o GenASM: An approximate string matching (ASM) acceleration framework to 

accelerate multiple steps of genome sequence analysis
§ First to enhance and accelerate Bitap for ASM with genomic sequences
§ Co-design of our modified scalable and memory-efficient algorithms with 

low-power and area-efficient hardware accelerators
§ Evaluation of three different use cases: read alignment, pre-alignment 

filtering, edit distance calculation

q Key Results: GenASM is significantly more efficient for all the three use cases 
(in terms of throughput and throughput per unit power) than state-of-the-art 
software and hardware baselines
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Outline
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Bottleneck analysis of long read assembly
[Briefings in Bioinformatics, 2018] 

GenASM: Approximate string matching framework 
for genome sequence analysis

[MICRO 2020] 

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing] 

GenGraph: Hardware acceleration framework 
for sequence-to-graph mapping 

[Ongoing]
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BitMAc: FPGA-based GenASM
Goal: Implement and map GenASM-DC and GenASM-TB to an FPGA with HBM2 
and demonstrate end-to-end application acceleration
Key Idea: HBM2 offers high bandwidth and FPGA resources offer high 
parallelism by instantiating multiple copies of GenASM accelerators
Key Findings: 
q Due to high amount of data needs to be saved for TB, we are bottlenecked 

by the amount of on-chip memory we have
q We cannot saturate the high bandwidth that multiple HBM2 stacks that are 

on package provide 
q Thus, we need

o Algorithm-level modifications to decrease the amount of data that need 
to be written, and

o New FPGA chips, which has a higher amount of on-chip memory capacity 
and bandwidth
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Outline
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Bottleneck analysis of long read assembly
[Briefings in Bioinformatics, 2018] 

GenASM: Approximate string matching framework 
for genome sequence analysis

[MICRO 2020] 

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing] 

GenGraph: Hardware acceleration framework 
for sequence-to-graph mapping 

[Ongoing] 
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Recall: Read Mapping Pipeline
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Indexing
(Pre-processing step to generate index of reference)

Seeding
(Query the index)

Pre-Alignment Filtering
(Filter out dissimilar sequences)

Read Alignment
(Perform distance/score calculation & traceback)

Reference
genome

Hash-table 
based index

Potential mapping 
locations

Optimal 
alignment

Remaining 
potential mapping 
locations

Reads

Reference
segment

Query read

reference bias
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity

63

Reference #1: ACGTACGT ACGTACGT
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity

64

Reference #1: ACGTACGT

Reference #2: ACGGACGT

ACGTACGT
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity
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Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome 
(reference bias) and toward using the sequence diversity
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Motivation: 
q Traditional read mapping causes reference bias
q Aligning sequences to graphs is a newer field and practical tools only 

start to emerge
q HW acceleration of sequence-to-graph mapping: important but 

unexplored research problem

Goal: Design an accelerator framework for sequence-to-graph 
mapping, which provides high performance and high accuracy

Our Approach: 
q BitAlign: Modified GenASM algorithms and HW accelerators for 

sequence-to-graph alignment
q MinSeed: The first minimizer-based seeding hardware

GenGraph
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Overview of GenGraph
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MinSeed:
performs minimizer-based 

seeding

BitAlign:
performs bitvector-based 

sequence-to-graph alignment

Host 
CPU

BitAlign-TB Accelerator

BitAlign-DC Accelerator

Main Memory (genome-based reference & index)

DC-SRAM

TB-SRAMs & Hop Queue Registers

MinSeed Accelerator

Min-SRAM Seed-SRAM

query
read
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Outline
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Bottleneck analysis of long read assembly
[Briefings in Bioinformatics, 2018] 

GenASM: Approximate string matching framework 
for genome sequence analysis

[MICRO 2020] 

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing] 

GenGraph: Hardware acceleration framework 
for sequence-to-graph mapping 

[Ongoing] 
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Conclusion

Rapid genome sequence analysis is bottlenecked
by the computational power and memory 

bandwidth limitations of existing systems,      
as many of the steps in genome sequence 

analysis must process a large amount of data
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Conclusion (cont’d.)

Genome sequence analysis can be accelarated
by co-designing fast and efficient algorithms

along with scalable and energy-efficient 
customized hardware accelerators

for the key bottleneck steps of the pipeline
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Conclusion (cont’d.)
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Bottleneck analysis of long read assembly
[Briefings in Bioinformatics, 2018]

GenASM: Approximate string matching framework 
for genome sequence analysis

[MICRO 2020]

BitMAc: FPGA-based near-memory acceleration of  
bitvector-based sequence alignment

[Ongoing]

GenGraph: Hardware acceleration framework 
for sequence-to-graph mapping 

[Ongoing]
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