
Damla Senol Cali et al.
https://damlasenolcali.github.io

TECHCON’21 ⎼ September 14, 2021

GenGraph: A Hardware Acceleration Framework
for Sequence-to-Graph Mapping

https://damlasenolcali.github.io/

Damla Senol Cali Task 2946.001

Genome Sequencing
q Genome sequencing: Enables us to determine the order of the DNA

sequence in an organism’s genome

o Plays a pivotal role in:
§ Personalized medicine
§ Outbreak tracing
§ Understanding of evolution

q Challenges:
o There is no sequencing machine that takes long DNA as an input,

and gives the complete sequence as output
o Sequencing machines extract small randomized fragments of the

original DNA sequence

2

Genome DNA

Damla Senol Cali Task 2946.001

Genome Sequencing (cont’d.)

3

Sample Collection

Preparation

Sequencing

Genome Sequence
Analysis

Large DNA
molecule

Chopped DNA
fragments

Sequenced
reads

ACGTACCCCGT

GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT

ACGACGTAGCT

AAAAAAAAAA

ACGAGCGGGT

Damla Senol Cali Task 2946.001

Sequencing Technologies

4

Short reads: a few hundred base pairs and error rate of ∼0.1%
Long reads: thousands to millions of base pairs and error rate of 5–10%

Oxford Nanopore
(ONT)

PacBio Illumina

Damla Senol Cali Task 2946.001

Read Mapping, method of aligning the
reads against the reference genome in

order to detect matches and variations.

ACGTACCCCGT
GATACACTGTG

TTTTTTTAATT

CTAGGGACCTT ACGACGTAGCT

AAAAAAAAAAACGAGCGGGT Reads

De novo Assembly, method of
merging the reads in order to construct

the original sequence.

Reference
Genome

Original
Sequence

Genome Sequence Analysis

5

Reads Mapped Reads Reads Assembled Reads

Damla Senol Cali Task 2946.001

GSA with Read Mapping
q Read mapping: First key step in genome sequence analysis (GSA)

o Aligns reads to one or more possible locations within
the reference genome, and

o Finds the matches and differences between the read and
the reference genome segment at that location

q Multiple steps of read mapping require approximate string matching

o Approximate string matching (ASM) enables read mapping to
account for sequencing errors and genetic variations in the reads

q Bottlenecked by the computational power and memory bandwidth
limitations of existing systems

6

Damla Senol Cali Task 2946.001

Read Mapping Pipeline

7

Indexing
(Pre-processing step to generate index of reference)

Seeding
(Query the index)

Pre-Alignment Filtering
(Filter out dissimilar sequences)

Read Alignment
(Perform distance/score calculation & traceback)

Reference
genome

Hash-table
based index

Potential mapping
locations

Optimal
alignment

Remaining
potential mapping
locations

Reads

Reference
segment

Query read

reference bias

Damla Senol Cali Task 2946.001

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

8

Reference #1: ACGTACGT ACGTACGT

Damla Senol Cali Task 2946.001

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

9

Reference #1: ACGTACGT

Reference #2: ACGGACGT

ACGTACGT

Damla Senol Cali Task 2946.001

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

10

ACG ACGT

T

G

Reference #1: ACGTACGT

Reference #2: ACGGACGT

Damla Senol Cali Task 2946.001

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

11

ACG ACGT

T

G

Reference #1: ACGTACGT

Reference #2: ACGGACGT

Reference #3: ACGTTACGT

Damla Senol Cali Task 2946.001

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

12

ACG ACGT

T

G

T

Reference #1: ACGTACGT

Reference #2: ACGGACGT

Reference #3: ACGTTACGT

Damla Senol Cali Task 2946.001

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

13

ACG ACGT

T

G

T

Reference #1: ACGTACGT

Reference #2: ACGGACGT

Reference #3: ACGTTACGT

Reference #4: ACGACGT

Damla Senol Cali Task 2946.001

Genome Graphs
Genome graphs:

❑ Include the reference genome together with genetic variations

❑ Provide a compact representation

❑ Enable us to move away from aligning with single reference genome
(reference bias) and toward using the sequence diversity

14

ACG ACGT

T

G

T

Reference #1: ACGTACGT

Reference #2: ACGGACGT

Reference #3: ACGTTACGT

Reference #4: ACGACGT

Damla Senol Cali Task 2946.001

q Traditional read mapping causes reference bias

q Aligning sequences to graphs is a newer field and only a
few software tools exist for graph-based GSA

q Graph-based analysis exacerbates mapping’s bottlenecks

q Hardware acceleration of sequence-to-graph mapping:
important but unexplored research problem

Problem & Motivation

15

Damla Senol Cali Task 2946.001

GenGraph:

q MinSeed: The first minimizer-based seeding hardware

q BitAlign: The first sequence-to-graph alignment hardware
based on modified GenASM algorithms and accelerators

GenGraph: First Graph Mapping Accelerator

16

Our Goal:
Design high-performance, scalable, power- and area-efficient

hardware accelerators that alleviate bottlenecks in both
the seeding and alignment steps of sequence-to-graph mapping

with support for both short and long reads

Damla Senol Cali Task 2946.001

Overview of GenGraph

17

GenGraph

MinSeed (MS)

Host
CPU

Main Memory (graph-based reference & index)

Find
Minimizers

query
read

1

BitAlign (BA)

Read
Scratchpad

Minimizer
Scratchpad

Filter
Frequencies

Seed
Scratchpad

Calculate
Seed

Regions

DC-SRAM
(Input Scratchpad)

Generate
Bitvectors

Perform
Traceback

TB-SRAMs
(Bitvector Scratchpad)

Hop Queues

query k-mers

minimizers

frequencies seed locations graph nodes

2

3

4

5

6

7

8
9

10

11

Damla Senol Cali Task 2946.001

MinSeed HW

18

Main Memory

Minimizer
Finder

Read
Scratchpad

(6 KB)

Minimizer
Scratchpad

(40 KB)

Frequency
Filter
(<?)

Seed
Scratchpad

(4 KB)

Seed Region
Calculator

(+/−/×)

query read

4 Bytes
(k-mer)

10 Bytes
(mini-
mizer)

frequency
threshold

8 Bytes
seed

minimizer
start (a),
minimizer
end (b),

seed
start (c),

seed
end (d)

error rate,
read length

candidate
sub-graph

2 Bytes
frequency

(1) Three computation modules responsible for finding the
minimizers, filtering the frequencies of minimizers, and finding the
associated regions of every seed location

(2) Three scratchpads for storing the query read, its minimizers, and
seed locations

(3) The memory interface, which handles the frequency, seed
location, and subgraph accesses

Damla Senol Cali Task 2946.001

BitAlign HW

19

TB-SRAMx

PC

PEx

TB-SRAMx+1

PC

Pex+1

HopQueueRegisterx

R[d-1]

oldR[d] oldR[d-1]

HopBits

PatternBitmask

HopQueueRegisterx+1

R[d]

HopQueueRegisterx-1

oldR[d-1] oldR[d]
R[d]

q Linear cyclic systolic array-based accelerator

q Hop queue registers to incorporate the hops by feeding the

bitvectors of non-neighbor characters/nodes

Damla Senol Cali Task 2946.001

Overall System of GenGraph

20

MinSeed

BitAlign

High Bandwidth Memory (HBM2)

MinSeed

BitAlign

MinSeed

BitAlign

MinSeed

BitAlign

. . .Host

Channels
(8× per HBM2 stack)

MinSeed HW
(1× per channel)

BitAlign HW
(1× per MinSeed HW)

q A single GenGraph consists of 8 MinSeed modules that exploit

data-level parallelism when performing seeding

q Each MinSeed module has exclusive access to one HBM2E channel

q Each MinSeed module is connected to a single BitAlign module

q We hide the latency of MinSeed when performing seeding while

running sequence-to-graph alignment with BitAlign

Damla Senol Cali Task 2946.001

Use Cases of GenGraph
(1) End-to-End Sequence-to-Graph Mapping

o The whole GenGraph design (MinSeed + BitAlign) should be executed
o We support both short and long reads

(2) Sequence-to-Graph Alignment
o BitAlign can be executed by itself without the need of an initial

seeding tool/accelerator
o BitAlign can also be used for sequence-to-sequence alignment since it

is a special and simpler variant of sequence-to-graph alignment

(3) Seeding
o MinSeed only can be used as the seeding module for both graph-

based mapping and linear traditional mapping
o MinSeed is orthogonal to be coupled with any alignment tool or

accelerator

21

Damla Senol Cali Task 2946.001

Evaluation Methodology
q We evaluate GenGraph using:

o Synthesized SystemVerilog models of the MinSeed and BitAlign

accelerator datapaths
o Simulation- and spreadsheet-based performance modeling

q 4 x 24GB HBM2E stacks, each with 8 independent channels
o 1 MinSeed and 1 BitAlign HW per each channel (32 in total)

q Baseline tools:
o GraphAligner and vg for sequence-to-graph mapping

o PaSGAL for sequence-to-graph alignment
o Darwin, GenAx, and GenASM for sequence-to-sequence alignment

q Simulated datasets for both short and long reads

22

Damla Senol Cali Task 2946.001

Key Results – Area & Power

23

q Based on our synthesis of MinSeed and BitAlign accelerator datapaths
using the Synopsys Design Compiler with a 28nm process (@ 1GHz):

Component Area (mm2) Power (mW)

MinSeed – Logic 0.017 10.8

Read Scratchpad (6 KB) 0.009 1.9

Minimizer Scratchpad (40 KB) 0.061 6.9

Seed Scratchpad (4 KB) 0.006 2.5

BitAlign – DC Logic with HopQueueRegisters (64 PEs) 0.393 378.0

BitAlign – TB Logic 0.020 2.7

Input Scratchpad (DC-SRAM; 24 KB) 0.034 8.4

Bitvector Scratchpad (TB-SRAMs; 128 KB) 0.233 115.1

Total − 1 x GenGraph 0.773 526.3 (0.5 W)

Total − 8 x GenGraph 6.184 4210.4 (4.2 W)

Total − 32 x GenGraph 24.736 16841.6 (16.8 W)

Damla Senol Cali Task 2946.001

Key Results – GenGraph with Long Reads (I)

24

GenGraph provides 8.8× throughput improvement
over GraphAligner’s 12-thread execution,

while reducing the power consumption by 4.9×

1E+00

1E+01

1E+02

1E+03

PacBio - 5% PacBio - 10% ONT - 5% ONT - 10% Average

Th
ro

ug
hp

ut
 (l

on
g

re
ad

s/
se

c)
GraphAligner (t=12) GenGraph

8.8!

Damla Senol Cali Task 2946.001 25

GenGraph provides 7.3× throughput improvement
over vg’s 12-thread execution,

while reducing the power consumption by 6.5×

1E+00

1E+01

1E+02

1E+03

PacBio - 5% PacBio - 10% ONT - 5% ONT - 10% AverageTh
ro

ug
hp

ut
 (l

on
g

re
ad

s/
se

c)
vg (t=12) GenGraph

7.3!

Key Results – GenGraph with Long Reads (II)

Damla Senol Cali Task 2946.001 26

GenGraph provides 168× throughput improvement
over GraphAligner’s 12-thread execution,

while reducing the power consumption by 4.7×

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07

Illumina - 100bp Illumina - 150bp Illumina - 250bp AverageTh
ro

ug
hp

ut
 (s

ho
rt

 re
ad

s/
se

c)

GraphAligner (t=12) GenGraph

168!

Key Results – GenGraph with Short Reads (I)

Damla Senol Cali Task 2946.001 27

GenGraph provides 726× throughput improvement
over vg’s 12-thread execution,

while reducing the power consumption by 4.9×

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07

Illumina - 100bp Illumina - 150bp Illumina - 250bp AverageTh
ro

ug
hp

ut
 (s

ho
rt

 re
ad

s/
se

c)

vg (t=12) GenGraph

726!

Key Results – GenGraph with Short Reads (II)

Damla Senol Cali Task 2946.001 28

BitAlign provides 41×-539× speedup over
the 48-thread AVX512-supported

execution of PaSGAL

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

LRC-L1
(100bp x 317.6K reads)

LRC-L2
(10Kbp x 3.2K reads)

MHC1-M1
(100bp x 497K reads)

MHC1-M2
(10Kbp x 4.9K reads)

Average

Ex
ec

ut
io

n
ti

m
e

(m
s)

PaSGAL (t=48) GenGraph

41!

539!
67!

513!
247!

Key Results – BitAlign (Graph Alignment)

Damla Senol Cali Task 2946.001 29

Key Results – BitAlign (Linear Alignment)
q BitAlign can be used for both sequence-to-sequence alignment

and sequence-to-graph alignment
o The cost of more functionality: Extra hop queue registers in

BitAlign
o However, we do not sacrifice any performance

q For long reads (over GACT of Darwin and GenASM):
o 4.8× and 1.2× throughput improvement,
o 1.9× and 5.2× higher power consumption, and
o 1.4× and 2.3× higher area overhead

q For short reads (over SillaX of GenAx and GenASM):
o 2.4× and 1.3× throughput improvement

Damla Senol Cali Task 2946.001

Conclusion
Problem:

o Traditional read mapping causes reference bias
o Aligning sequences to graphs is a newer field and only a few software

tools exist for graph-based GSA
o Graph-based analysis exacerbates mapping’s bottlenecks
o Hardware acceleration of sequence-to-graph mapping: important but

unexplored research problem

Key Contributions:
o GenGraph: First acceleration framework for sequence-to-graph

mapping
§ MinSeed: First minimizer-based seeding accelerator
§ BitAlign: First sequence-to-graph alignment accelerator based upon

our new bitvector-based, highly-parallel algorithm

Key Results: GenGraph and BitAlign provide significant speedups compared
to the software baselines, while reducing the power consumption

30

Damla Senol Cali et al.
https://damlasenolcali.github.io

TECHCON’21 ⎼ September 14, 2021

This work was supported in part by Semiconductor Research Corporation (SRC).

GenGraph: A Hardware Acceleration Framework
for Sequence-to-Graph Mapping

https://damlasenolcali.github.io/

Backup Slides
(Sequencing)

Damla Senol Cali Task 2946.001

Current State of Sequencing

33

Damla Senol Cali Task 2946.001

Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

34

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Damla Senol Cali Task 2946.001

Current State of Sequencing (cont’d.)

*From NIH (https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data)

35

Computation is a bottleneck!

https://www.genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-Data

Backup Slides
(GenGraph)

Damla Senol Cali Task 2946.001

GenGraph – Graph Structure

37

Nodes table

.

.

.

seq. #out
length edges

Characters
table

Edges table

.

.

.

2-bit
char

.

.

.

4B edge info

Damla Senol Cali Task 2946.001

GenGraph – Index Structure

38

First-level: Buckets

.

.

.

Second-level: Minimizers Third-level: Locations

#minimizers

.

.

.

hash value #locations

.

.

.

node ID offset

Damla Senol Cali Task 2946.001

Minimizers

39

Position 1 2 3 4 5 6 7

Sequence A G T A G C A

Full set of
k-mers
with
minimizer
in red

A G T

G T A

T A G

A G C

G C A

Damla Senol Cali Task 2946.001

BitAlign Algorithm

40

Damla Senol Cali Task 2946.001

GenGraph – Hops

41

Damla Senol Cali Task 2946.001

Recall: GenASM-DC’s HW Design

42

Damla Senol Cali Task 2946.001

BitAlign – Hop Length Dist Plots

43

Damla Senol Cali Task 2946.001

Hop Length Dist Plots (cont’d.)

44

Damla Senol Cali Task 2946.001

DP-based Graph Alignment

From PaSGAL paper

45

https://ieeexplore.ieee.org/abstract/document/8821047

Damla Senol Cali Task 2946.001

DP-based Graph Alignment (cont’d.)

From abPOA paper

“abPOA processes all the vectors in a row-by-row manner following the partial
order of the graph. During the DP process, for “match” and “delete”
operations (diagonal and vertical moves in the DP matrix), all scores stored in
each SIMD vector can be updated in parallel as they only rely on scores in the
predecessor rows. For “insert” operations (horizontal moves in the DP matrix),
sequential non-parallel updating of scores in the same SIMD vector is needed,
as the score of each cell depends on the score of the cell on the left.”

46

https://academic.oup.com/bioinformatics/advance-article-abstract/doi/10.1093/bioinformatics/btaa963/5962085?redirectedFrom=fulltext

Backup Slides
(GenASM)

Damla Senol Cali Task 2946.001

GenASM [MICRO 2020]

48

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian,
Jeremie S. Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna,
Amirali Boroumand, Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan,
Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis”
Proceedings of the 53rd International Symposium on Microarchitecture (MICRO),
Virtual, October 2020.

https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/

Damla Senol Cali Task 2946.001

GenASM: ASM Framework for GSA

q GenASM: First ASM acceleration framework for GSA
o Based upon the Bitap algorithm

§ Uses fast and simple bitwise operations to perform ASM

o Modified and extended ASM algorithm
§ Highly-parallel Bitap with long read support
§ Novel bitvector-based algorithm to perform traceback

o Co-design of our modified scalable and memory-efficient algorithms
with low-power and area-efficient hardware accelerators

Our Goal:
Accelerate approximate string matching

by designing a fast and flexible framework,
which can accelerate multiple steps of genome sequence analysis

49

Damla Senol Cali Task 2946.001

q Sequenced genome may not exactly map to the reference genome due
to genetic variations and sequencing errors

q Approximate string matching (ASM):
o Detect the differences and similarities between two sequences
o In genomics, ASM is required to:

§ Find the minimum edit distance (i.e., total number of differences)
§ Find the optimal alignment with a traceback step

◦ Sequence of matches, substitutions, insertions and deletions,
along with their positions

o Usually implemented as a dynamic programming (DP) based algorithm

Approximate String Matching

50

Reference:
Read:

insertionsubstitutiondeletion

A A A AT G T T TA G T G C TA C T G
A A AT G T T TA C T G C TA C T T G
A A A AT G T T TA G T G C TA C T G
A A A AT G T T TA C T G C TA C T T G
A A A AT G T T TA G T G C TA C T G
A A A AT G T T TA G T G C TA C T T G
A A A AT G T T TA G T G C TA C T T G
A A A AT G T T TA G T G C TA C T T GC

A
T

G

Damla Senol Cali Task 2946.001

DP-based ASM

51

Commonly-used
algorithm for ASM

in genomics…

...with quadratic
time and space

complexity

Damla Senol Cali Task 2946.001

Bitap Algorithm
q Bitap1,2 performs ASM with fast and simple bitwise operations

o Amenable to efficient hardware acceleration
o Computes the minimum edit distance between a text (e.g., reference

genome) and a pattern (e.g., read) with a maximum of k errors

q Step 1: Pre-processing (per pattern)
o Generate a pattern bitmask (PM) for each character in the alphabet

(A, C, G, T)
o Each PM indicates if character exists at each position of the pattern

q Step 2: Searching (Edit Distance Calculation)
o Compare all characters of the text with the pattern by using:

§ Pattern bitmasks
§ Status bitvectors that hold the partial matches
§ Bitwise operations

[1] R. A. Baeza-Yates and G. H. Gonnet. "A New Approach to Text Searching." CACM, 1992.
[2] S. Wu and U. Manber. "Fast Text Searching: Allowing Errors." CACM, 1992.

52

Damla Senol Cali Task 2946.001

Example for the Bitap Algorithm

53

PREPROCESSING
Pattern Bitmasks:

CTGA
PM(A) = 1110
PM(C) = 0111
PM(G) = 1101
PM(T) = 1011

State Vectors:

R0 = 1111
R1 = 1111

Text[4]: CGTGA
oldR0 = 1111
oldR1 = 1111

R0 = (oldR0 << 1) | PM(A)
= 1110

R1 =

= D & S & I & M = 1100

0 1

D : oldR0 = 1111
S : oldR0 << 1 = 1110
I : R0 << 1 = 1100
M : (oldR1 << 1) | PM(A) = 1110

Text[3]: CGTGA
oldR0 = 1110
oldR1 = 1100

R0 = (oldR0 << 1) | PM(G)
= 1101

R1 =

= D & S & I & M = 1000

2

D : oldR0 = 1110
S : oldR0 << 1 = 1100
I : R0 << 1 = 1010
M : (oldR1 << 1) | PM(G) = 1101

Text[2]: CGTGA
oldR0 = 1101
oldR1 = 1000

R0 = (oldR0 << 1) | PM(T)
= 1011

R1 =

= D & S & I & M = 0000

3

D : oldR0 = 1101
S : oldR0 << 1 = 1010
I : R0 << 1 = 0110
M : (oldR1 << 1) | PM(T) = 1011

Alignment Found @ Location=2

Text[1]: CGTGA
oldR0 = 1011
oldR1 = 0000

R0 = (oldR0 << 1) | PM(G)
= 1111

R1 =

= D & S & I & M = 0000

4

D : oldR0 = 1011
S : oldR0 << 1 = 0110
I : R0 << 1 = 1110
M : (oldR1 << 1) | PM(G) = 1101

Alignment Found @ Location=1

Text[0]: CGTGA
oldR0 = 1111
oldR1 = 0000

R0 = (oldR0 << 1) | PM(C)
= 1111

R1 =

= D & S & I & M = 0110

5

D : oldR0 = 1111
S : oldR0 << 1 = 1110
I : R0 << 1 = 1110
M : (oldR1 << 1) | PM(C) = 0111

Alignment Found @ Location=0

Text Region:
CGTGA

Query Pattern:
CTGA

Edit Distance
Threshold (k):

1

Damla Senol Cali Task 2946.001

Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take

place sequentially

54

Damla Senol Cali Task 2946.001

Bitap Algorithm (cont’d.)

Large number of
iterations

q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1
insertion = R[d-1] << 1
match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

55

Damla Senol Cali Task 2946.001

Bitap Algorithm (cont’d.)

Data dependency
between iterations

(i.e., no
parallelization)

q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1
insertion = R[d-1] << 1
match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

56

Damla Senol Cali Task 2946.001

Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take

place sequentially

2) No Support for Traceback:
o Bitap does not include any support for optimal alignment identification

57

Damla Senol Cali Task 2946.001

Bitap Algorithm (cont’d.)
q Step 2: Edit Distance Calculation

For each character of the text (char):

Copy previous R bitvectors as oldR

R[0] = (oldR[0] << 1) | PM [char]

For d = 1…k:

deletion = oldR[d-1]

substitution = oldR[d-1] << 1
insertion = R[d-1] << 1
match = (oldR[d] << 1) | PM [char]

R[d] = deletion & mismatch & insertion & match

Check MSB of R[d]:

If 1, no match.

If 0, match with d many errors.

58

Does not store and process
these intermediate bitvectors
to find the optimal alignment

(i.e., no traceback)

Damla Senol Cali Task 2946.001

Hardware

Algorithm

Limitations of Bitap
1) Data Dependency Between Iterations:
o Two-level data dependency forces the consecutive iterations to take

place sequentially

2) No Support for Traceback:
o Bitap does not include any support for optimal alignment identification

3) No Support for Long Reads:
o Each bitvector has a length equal to the length of the pattern
o Bitwise operations are performed on these bitvectors

4) Limited Compute Parallelism:
o Text-level parallelism
o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:
o High memory bandwidth required to read and write the computed

bitvectors to memory

59

Damla Senol Cali Task 2946.001

SW

HW

GenASM: ASM Framework for GSA
q Approximate string matching (ASM) acceleration framework based

on the Bitap algorithm

q First ASM acceleration framework for genome sequence analysis

q We overcome the five limitations that hinder Bitap’s use in genome
sequence analysis:

o Modified and extended ASM algorithm

§ Highly-parallel Bitap with long read support

§ Novel bitvector-based algorithm to perform traceback

o Specialized, low-power and area-efficient hardware for
both modified Bitap and novel traceback algorithms

60

Damla Senol Cali Task 2946.001

GenASM Algorithm
q GenASM-DC Algorithm:

o Modified Bitap for Distance Calculation
o Extended for efficient long read support
o Besides bit-parallelism that Bitap has, extended for parallelism:

§ Loop unrolling
§ Text-level parallelism

q GenASM-TB Algorithm:
o Novel Bitap-compatible TraceBack algorithm
o Walks through the intermediate bitvectors (match, deletion,

substitution, insertion) generated by GenASM-DC
o Follows a divide-and-conquer approach to decrease the

memory footprint

61

Damla Senol Cali Task 2946.001

Loop Unrolling in GenASM-DC

62

Cycle#
Thread1

R0/4
Thread2

R1/5
Thread3

R2/6
Thread4

R3/7

#1 T0-R0 − − −
#2 T1-R0 T0-R1 − −
#3 T2-R0 T1-R1 T0-R2 −
#4 T3-R0 T2-R1 T1-R2 T0-R3
#5 T0-R4 T3-R1 T2-R2 T1-R3
#6 T1-R4 T0-R5 T3-R2 T2-R3
#7 T2-R4 T1-R5 T0-R6 T3-R3
#8 T3-R4 T2-R5 T1-R6 T0-R7
#9 − T3-R5 T2-R6 T1-R7

#10 − − T3-R6 T2-R7
#11 − − − T3-R7

target cell (Rd)
cells target cell depends on (oldRd, Rd-1, oldRd-1)

data written to memory
data read from memory

Cycle#
Thread1

R0/1/2/..

#1 T0-R0
… …

#8 T0-R7
#9 T1-R0
… …

#16 T1-R7
#17 T2-R0
… …

#24 T2-R7
#25 T3-R0

… …
#32 T3-R7

Damla Senol Cali Task 2946.001

Traceback Example with GenASM-TB

63

Deletion Example (Text Location=0)

Text[0]: C Text[1]: G Text[2]: T Text[3]: G Text[4]: A

Match(C) Del(–) Match(T) Match(G) Match(A)
<3,0,1> <2,1,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-M : 0111

R0- :
R1-D : 1011

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Substitution Example (Text Location=1)

Text[1]: G Text[2]: T Text[3]: G Text[4]: A

Subs(C) Match(T) Match(G) Match(A)
<3,1,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-S : 0110

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Insertion Example (Text Location=2)

Text[–] Text[2]: T Text[3]: G Text[4]: A

Ins(C) Match(T) Match(G) Match(A)
<3,2,1> <2,2,0> <1,3,0> <0,4,0>

R0- :
R1-I : 0110

R0-M : 1011
R1- :

R0-M : 1101
R1- :

R0-M : 1110
R1- :

Damla Senol Cali Task 2946.001

GenASM-DC GenASM-TB

GenASM Hardware Design

64

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.

Damla Senol Cali Task 2946.001

GenASM Hardware Design

65

GenASM-DC GenASM-TB

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.

reference
& query

locations

Write
bitvectors

reference
text

& query
pattern

sub-text &
sub-pattern

Read
bitvectors

Generate
bitvectors

2

1

3

4

5 6

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Read
bitvectors

6
Write

bitvectors

5

Generate
bitvectors 4

sub-text &
sub-pattern3

reference
text

& query
pattern

2

reference
& query

locations

1

Find the
traceback output

7

Damla Senol Cali Task 2946.001

GenASM Hardware Design

66

GenASM-DC GenASM-TB

Host
CPU

TB-SRAM1

TB-SRAM2

TB-SRAMn

GenASM-TB
Accelerator

GenASM-DC
Accelerator

GenASM-TB
Accelerator

GenASM-DC
Accelerator

Main
Memory

DC-SRAMDC-SRAM
GenASM-DC GenASM-TB

TB-SRAM1

TB-SRAM2

TB-SRAMn

..

.

reference
& query

locations

Write
bitvectors

reference
text

& query
pattern

sub-text &
sub-pattern

Read
bitvectors

Find the
traceback output

Generate
bitvectors

2

1

3

4

5 6

7

GenASM-DC:
generates bitvectors

and performs edit
Distance Calculation

GenASM-TB:
performs TraceBack
and assembles the
optimal alignment

Our specialized compute units and on-chip SRAMs help us to:
à Match the rate of computation with memory capacity and bandwidth

à Achieve high performance and power efficiency
à Scale linearly in performance with

the number of parallel compute units that we add to the system

Damla Senol Cali Task 2946.001

GenASM-DC: Hardware Design
q Linear cyclic systolic array-based accelerator

o Designed to maximize parallelism and minimize memory bandwidth and
memory footprint

67

Processing Block (PB)

Processing Core (PC)

OldR[d-1] <<

<<

<<

R[d-1]

OldR[d]

PatternMask Match

R[d]

Substitution

Insertion

Deletion

OldR
out

PM
out

PM
out

OldR in

PM in
PC

PE1

PC

PE2

PC

PEp-1

PC

PEp

OldR
out

PC

PE

DC-SRAM

TB-SRAMp-1

Intermediate Bitvectors

TB-SRAMpTB-SRAM2TB-SRAM1

Damla Senol Cali Task 2946.001

Bitwise
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192 insertion

deletion

subs

64

64

64

64

1

2

Next Rd
Addr

Compute

3

GenASM-TB

GenASM-TB: Hardware Design

q Very simple logic:
❶Reads the bitvectors from one of the TB-SRAMs using the computed
address
❷Performs the required bitwise comparisons to find the traceback output
for the current position
❸Computes the next TB-SRAM address to read the new set of bitvectors

68

Bitwise
Comparisons

CIGAR string

Last CIGAR

<<

match

CIGAR
out

1

2
.
.

64

192 insertion

deletion

subs

64

64

64

64

to main
memory

1

2

Next Rd
Addr

Compute

3

1.5KB
TB-SRAM1

1.5KB
TB-SRAM2

1.5KB
TB-SRAM64

1

2

3

Damla Senol Cali Task 2946.001

Use Cases of GenASM
(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate
reference regions

(2) Pre-Alignment Filtering for Short Reads
o Quickly identify and filter out the unlikely candidate reference

regions for each read

(3) Edit Distance Calculation
o Measure the similarity or distance between two sequences

q We also discuss other possible use cases of GenASM in our paper:
o Read-to-read overlap finding, hash-table based indexing, whole

genome alignment, generic text search

69

Damla Senol Cali Task 2946.001

Evaluation Methodology
q We evaluate GenASM using:
o Synthesized SystemVerilog models of the GenASM-DC and

GenASM-TB accelerator datapaths
o Detailed simulation-based performance modeling

q 16GB HMC-like 3D-stacked DRAM architecture
o 32 vaults
o 256GB/s of internal bandwidth, clock frequency of 1.25GHz
o In order to achieve high parallelism and low power-consumption
o Within each vault, the logic layer contains a GenASM-DC

accelerator, its associated DC-SRAM, a GenASM-TB accelerator,
and TB-SRAMs.

70

Damla Senol Cali Task 2946.001

Evaluation Methodology (cont’d.)

71

SW Baselines HW Baselines

Read Alignment Minimap21
BWA-MEM2

GACT (Darwin)3
SillaX (GenAx)4

Pre-Alignment Filtering – Shouji5

Edit Distance Calculation Edlib6 ASAP7

[1] H. Li. "Minimap2: Pairwise Alignment for Nucleotide Sequences." In Bioinformatics, 2018.
[2] H. Li. "Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM." In arXiv, 2013.

[3] Y. Turakhia et al. "Darwin: A genomics co-processor provides up to 15,000 x acceleration on long read assembly." In ASPLOS, 2018.
[4] D. Fujiki et al. "GenAx: A genome sequencing accelerator." In ISCA, 2018.

[5] M. Alser. "Shouji: A fast and efficient pre-alignment filter for sequence alignment." In Bioinformatics, 2019.
[6] M. Šošić et al. "Edlib: A C/C++ library for fast, exact sequence alignment using edit distance." In Bioinformatics, 2017.

[7] S.S. Banerjee et al. ”ASAP: Accelerated short-read alignment on programmable hardware." In TC, 2018.

Damla Senol Cali Task 2946.001

Evaluation Methodology (cont’d.)
q For Use Case 1: Read Alignment, we compare GenASM with:

o Minimap2 and BWA-MEM (state-of-the-art SW)
§ Running on Intel® Xeon® Gold 6126 CPU (12-core) operating

@2.60GHz with 64GB DDR4 memory
§ Using two simulated datasets:

◦ Long ONT and PacBio reads: 10Kbp reads, 10-15% error rate
◦ Short Illumina reads: 100-250bp reads, 5% error rate

o GACT of Darwin and SillaX of GenAx (state-of-the-art HW)
§ Open-source RTL for GACT
§ Data reported by the original work for SillaX
§ GACT is best for long reads, SillaX is best for short reads

72

Damla Senol Cali Task 2946.001

Evaluation Methodology (cont’d.)
q For Use Case 2: Pre-Alignment Filtering, we compare GenASM with:

o Shouji (state-of-the-art HW – FPGA-based filter)
§ Using two datasets provided as test cases:
• 100bp reference-read pairs with an edit distance threshold of 5
• 250bp reference-read pairs with an edit distance threshold of 15

q For Use Case 3: Edit Distance Calculation, we compare GenASM with:

o Edlib (state-of-the-art SW)
§ Using two 100Kbp and 1Mbp sequences with similarity ranging

between 60%-99%

o ASAP (state-of-the-art HW – FPGA-based accelerator)
§ Using data reported by the original work

73

Damla Senol Cali Task 2946.001

Key Results – Area and Power
q Based on our synthesis of GenASM-DC and GenASM-TB accelerator

datapaths using the Synopsys Design Compiler with a 28nm process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

Total (1 vault): 0.334 mm2 0.101 W
Total (32 vaults): 10.69 mm2 3.23 W

% of a Xeon CPU core: 1% 1%

74

0.049 0.016

0.013

0.256

Area (mm2)

0.033

0.004
0.009

0.055

Power (W)

0.033

0.004
0.009

0.055
Power (W)

GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)

0.033

0.004
0.009

0.055

Power (W)

GenASM-DC (64 PEs)
GenASM-TB
DC-SRAM (8 KB)
TB-SRAMs (64 x 1.5 KB)

Damla Senol Cali Task 2946.001

Key Results – Area and Power
q Based on our synthesis of GenASM-DC and GenASM-TB accelerator

datapaths using the Synopsys Design Compiler with a 28nm LP process:
o Both GenASM-DC and GenASM-TB operate @ 1GHz

75

0.049 0.016

0.013

0.256

Area (mm2)

0.033

0.004
0.009

0.055

Power (W)

0.033

0.004
0.009

0.055
Power (W)

GenASM-DC (64 PEs) GenASM-TB DC-SRAM (8 KB) TB-SRAMs (64 x 1.5 KB)

0.033

0.004
0.009

0.055

Power (W)

GenASM-DC (64 PEs)
GenASM-TB
DC-SRAM (8 KB)
TB-SRAMs (64 x 1.5 KB)

GenASM has low area and power overheads

Damla Senol Cali Task 2946.001

Key Results – Use Case 1
(1) Read Alignment Step of Read Mapping

o Find the optimal alignment of how reads map to candidate
reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences

76

Damla Senol Cali Task 2946.001

Key Results – Use Case 1 (Long Reads)

77

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

PacBio - 10% PacBio - 15% ONT - 10% ONT - 15% Average

Th
ro

ug
hp

ut
 (r
ea

ds
/s
ec

)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)

Minimap2 (12-thread) GenASM (w/ Minimap2)

GenASM achieves 648× and 116× speedup over
12-thread runs of BWA-MEM and Minimap2,

while reducing power consumption by 34× and 37×

648×
116×

SW

Damla Senol Cali Task 2946.001

Key Results – Use Case 1 (Long Reads)

78

1.E+00

1.E+02

1.E+04

1.E+06

1Kbp 2Kbp 3Kbp 4Kbp 5Kbp 6Kbp 7Kbp 8Kbp 9Kbp 10Kbp AverageTh
ro

ug
hp

ut
(r
ea

ds
/s
ec

)

GACT (Darwin) GenASM

GenASM provides 3.9× better throughput,
6.6× the throughput per unit area, and
10.5× the throughput per unit power,

compared to GACT of Darwin

3.9×

HW

Damla Senol Cali Task 2946.001

1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06
1E+07
1E+08

Illumina-100bp Illumina-150bp Illumina-250bp Average

Th
ro

ug
hp

ut
 (r
ea

ds
/s
ec

)

BWA-MEM (12-thread) GenASM (w/ BWA-MEM)
Minimap2 (12-thread) GenASM (w/ Minimap2)

Key Results – Use Case 1 (Short Reads)

79

GenASM achieves 111× and 158× speedup over
12-thread runs of BWA-MEM and Minimap2,

while reducing power consumption by 33× and 31×

111× 158×

GenASM provides 1.9× better throughput and
uses 63% less logic area and 82% less logic power,

compared to SillaX of GenAx

HW

SW

Damla Senol Cali Task 2946.001

Key Results – Use Case 2

80

(1) Read Alignment Step of Read Mapping
o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences

Damla Senol Cali Task 2946.001

Key Results – Use Case 2
q Compared to Shouji:

o 3.7× speedup

o 1.7× less power consumption

o False accept rate of 0.02% for GenASM vs. 4% for Shouji

o False reject rate of 0% for both GenASM and Shouji

81

GenASM is more efficient in terms of
both speed and power consumption,

while significantly improving the accuracy
of pre-alignment filtering

HW

Damla Senol Cali Task 2946.001

Key Results – Use Case 3

82

(1) Read Alignment Step of Read Mapping
o Find the optimal alignment of how reads map to candidate

reference regions

(2) Pre-Alignment Filtering for Short Reads
oQuickly identify and filter out the unlikely candidate

reference regions for each read

(3) Edit Distance Calculation
oMeasure the similarity or distance between two sequences

Damla Senol Cali Task 2946.001

1.00E+00

1.00E+02

1.00E+04

1.00E+06

1.00E+08

99% 97% 94% 90% 80% 70% 60%

E
xe

cu
ti

on
 t

im
e
(µ
s)

Similarity between two sequences

Edlib (100 Kbp) GenASM (100 Kbp) Edlib (1 Mbp) GenASM (1 Mbp)

Key Results – Use Case 3

83

GenASM provides 146 – 1458× and 627 – 12501× speedup,
while reducing power consumption by 548× and 582×

for 100Kbp and 1Mbp sequences, respectively, compared to Edlib

GenASM provides 9.3 – 400× speedup over ASAP,
while consuming 67× less power

146× 1458×
627×

12501×

HW

SW

Damla Senol Cali Task 2946.001

Additional Details in the Paper
q Details of the GenASM-DC and GenASM-TB algorithms

q Big-O analysis of the algorithms

q Detailed explanation of evaluated use cases

q Evaluation methodology details
(datasets, baselines, performance model)

q Additional results for the three evaluated use cases

q Sources of improvements in GenASM
(algorithm-level, hardware-level, technology-level)

q Discussion of four other potential use cases of GenASM

84

Damla Senol Cali Task 2946.001

Summary of GenASM
q Problem:

o Genome sequence analysis is bottlenecked by the computational power and
memory bandwidth limitations of existing systems

o This bottleneck is particularly an issue for approximate string matching

q Key Contributions:
o GenASM: An approximate string matching (ASM) acceleration framework to

accelerate multiple steps of genome sequence analysis
§ First to enhance and accelerate Bitap for ASM with genomic sequences
§ Co-design of our modified scalable and memory-efficient algorithms with

low-power and area-efficient hardware accelerators
§ Evaluation of three different use cases: read alignment, pre-alignment

filtering, edit distance calculation

q Key Results: GenASM is significantly more efficient for all the three use cases
(in terms of throughput and throughput per unit power) than state-of-the-art
software and hardware baselines

85

Damla Senol Cali et al.
https://damlasenolcali.github.io

TECHCON’21 ⎼ September 14, 2021

This work was supported in part by Semiconductor Research Corporation (SRC).

GenGraph: A Hardware Acceleration Framework
for Sequence-to-Graph Mapping

https://damlasenolcali.github.io/

