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Bitap Algorithm Limitations of Bitap

 Bitap*2performs ASM with fast and simple bitwise operations
o Amenable to efficient hardware acceleration
o Computes the minimum edit distance between a text (e.g., reference
genome) and a pattern (e.qg., read) with a maximum of k errors
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Approximate String Matching (ASM)

Genome Sequencing

1 Genome sequencing: Enables us to determine the order of the DNA

1) Data Dependency Between Iterations: Algorithm

J Sequenced genome may not exactly map to the reference genome due
to genetic variations and sequencing errors

Reference: AAAATGTTTA|GITGCTAC [TG
Read: AAA [TGTTTA|CTGCTACT[TG

deletion substitution insertion

0 Read mapping: First key step in genome sequence analysis (GSA)

sequence in an organism’s genome o Two-level data dependency forces the consecutive iterations to take

o Plays a pivotal role in: \I'E _ ﬁi o g_--
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= Personalized medicine I NN

o Aligns reads to one or more possible locations within _
place sequentially
the reference genome, and

o Finds the matches and differences between the read and 2) No Support for Traceback:

the reference genome segment at that location

—

O Step 1: Pre-processing (per pattern) o Bitap does not include any support for optimal alignment identification

o Generate a pattern bitmask (PM) for each character in the alphabet
(A GG T)
o Each PM indicates if character exists at each position of the pattern

= Qutbreak tracing Genome DNA

) No Support for Long Reads:
= Understanding of evolution 3 PP g9

J Approximate string matching (ASM):

o Detect the differences and similarities between two sequences % Bz el eEten e o g G i B i o s e

O Multiple steps of read mapping require approximate string matching o Bitwise operations are performed on these bitvectors

o In genomics, ASM is required to:
* Find the minimum edit distance (i.e., total number of edits)
= Find the optimal alignment with a traceback step

> Sequence of matches, substitutions, insertions and deletions,
along with their positions
> 3M-1D-6M-1S-6M-11-2M for the above example

o Usually implemented as a dynamic programming (DP) based algorithm

GenASM-DC: Hardware Design

o Approximate string matching (ASM) enables read mapping to

Q Step 2: Searching (Edit Distance Calculation) 4) Limited Compute Parallelism: Hardware

o Compare all characters of the text with the pattern by using:
= Pattern bitmasks
= Status bitvectors that hold the partial matches
= Bitwise operations

[ Modern genome sequencing machines extract smaller randomized account for sequencing errors and genetic variations in the reads o Text-level parallelism

fragments of the original DNA sequence, known as reads o Limited by the number of compute units in existing systems

5) Limited Memory Bandwidth:
o High memory bandwidth required to read and write the computed

. : ,,__, 0
o Short reads: a few hundred base pairs, error rate of ~0.1% 1 Bottlenecked by the computational power and memory bandwidth

o Long reads: thousands to millions of base pairs, error rate of 10-15% T L
limitations of existing systems
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bitvectors to memory

GenASM: ASM Framework for GSA

Use Cases of GenASM

GenASM Hardware Design GenASM-TB: Hardware Design
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@) Performs the required bitwise comparisons to find the traceback output
for the current position
€) Computes the next TB-SRAM address to read the new set of bitvectors

o Read-to-read overlap finding, hash-table based indexing, whole

Our specialized compute units and on-chip SRAMs help us to: “””-ﬂj_E e

Processing Core (PC)

= Highly-parallel Bitap with long read support

genome alignment, generic text search

—> Match the rate of computation with memory capacity and bandwidth

= Novel bitvector-based algorithm to perform traceback = Adeel D e e e ever cims

—> Scale linearly in performance with
the number of parallel compute units that we add to the system

o Specialized, low-power and area-efficient hardware for both

Results —Use Case 1

modified Bitap and novel traceback algorithms

Evaluation Methodology
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Additional results for the three evaluated use cases

GenASM is significantly more efficient for all the three use cases (in terms of throughput and
throughput per unit power) than state-of-the-art software and hardware baselines

d Sources of improvements in GenASM

GenASM has low area and power overheads

(algorithm-level, hardware-level, technology-level)
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d Discussion of four other potential use cases of GenASM
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